Topic
SUBSURFACE PLANNING

Title
To go Underground - Right or Wrong?

Author
H. C. Fischer, B. Jansson, M. Barker, Y. Watanabe, M. Bergman, C. Fairhurst, J. Rygh, L. Lupiac

Originally published
in the Journal "Advances in Tunnelling Technology and Subsurface Use",

Copyright © 1978, Elsevier Science Limited, www.elsevier.com; All Rights reserved.

Working Group: WG 4 - "Subsurface Planning"

Open Session, Seminar, Workshop: Open Session 1978, Tokyo: "To go Underground: Right or wrong?"

Others: Guidelines

Abstract: -

Résumé: -

Remarks: This article includes the proceedings of the Open Session: To go Underground - Right or Wrong? During the 4th Annual Meeting in Tokyo 1978. The main topics are: To go Underground - Right or Wrong?; Terraspace - A resource in human, economic and urban development; Underground construction; Subsurface use viewed in the light of comprehensive city planning; Low cost storage of petroleum in salt domes, mined and rock caverns; Energy conservation by increased use of underground space; Energy saving in subsurface food stores; Should we avoid transportation underground?
TO GO UNDERGROUND—RIGHT OR WRONG?

Now we have reached the day of the open session of the International Tunnelling Association. I am happy to warmly welcome all the delegates from the ITA, and also warmly welcome all our guests who have attended the symposium of tunnelling under difficult conditions, but are not yet with us in the ITA.

As you know, tunnels and other surface constructions can be regarded and discussed from various angles—how to make them, and how to use them. Or how to make them and why to make them: that is, technology versus sociology combined with economy. These are questions for engineers, decision-makers and the general public. Until now the sessions during this week have mainly covered technical questions—how to make tunnels. Well, we want to make the picture more complete, by devoting this session to some aspects on why to make tunnels and underground constructions, and how to use them.

The main theme is: 'Why should we use the sub-surface? what are the reasons for going underground?' There are also reasons against it. Thus, a more balanced title may be: 'To go underground—right or wrong?'

A specific answer is: cost and potential enemies. We must develop for each project, and then we should take trouble to consider all relevant arguments, including those that are not easily expressed in economic terms. Being in the East, we might venture to talk symbolically, in terms of fairy tales, of treasures and dragons watching these treasures. As we are not talking about mining now, our title is: 'The availability of sub-surface space, right under our feet.' Ready to be used for a vast number of purposes. And the dragons are various problems and dangers, during excavation, construction and use.

Many of these have been discussed during the last few days, and we have seen that it is practically always possible to conquer the dragons, if we are prepared to use sufficient effort. Thus, the real question is: Are the treasures of so high a value that it is worthwhile to fight the dragons to secure the treasures? This is what is often called 'benefit and cost analysis'.

Treasures in the ground? Space is available in the ground. That is one important treasure, and we may take advantage of this, and put some of our treasures into the ground because they will be safer there, protected against heat and cold, against sound and vibration, rain, and the air. And in a specific sense, the other and potential enemies. Furthermore, protection is a two-way function. And so we may sometimes part the dragons into the ground in order to keep some of our treasures on the surface.

These are questions of interest to countries at all stages of development. Since time immemorial, man has used tunnels and caverns for living in, for storage, for protection and for transport. While excavation technology is now developing fast, there is a place for much imagination concerning the use of underground space. The new awareness of the importance of energy stimulates development of underground storage and conversion of energy, and also the use of the heat insulation of the ground for storage of cold and hot products, and for various activities and even housing.

Mesdames et Messieurs Bonjour. Nous en sommes arrivés au jour de la séance publique de l'AITES. Le suis heureux de souhaiter la bienvenue à tous les délégués de l'AITES ainsi qu'à tous ceux qui sont venus participer au Symposium sur la construction des tunnels dans des conditions difficiles, et qui ne sont pas encore membres de l'AITES.

Comme vous le savez, les tunnels et autres constructions souterraines peuvent être considérées, et envisagés de plusieurs façons: comment les fabriquer? comment les utiliser? ou bien encore comment les fabriquer et pourquoi les fabriquer? il s'agit là de technologie, et de sociologie liée à l'économie. C'est donc une question qui interresse les ingénieurs, les décideurs et le grand public dans son ensemble. Jusqu'à présent, les sessions de cette semaine ont couvert un certain nombre de questions techniques concernant la construction des tunnels et nous aimerions compléter ce tableau en consacrant cette séance à certains aspects relatifs au "pourquoi" fabriquer ces tunnels et les constructions souterraines et au "comment" les utiliser. Notre thème principal, est "pourquoi utiliser le sous-sol?" Il y a des arguments pour et contre et nous avons pensé qu'un titre plus équilibré pourrait être "occuper le sous-sol c'est-bien ou mal?" Une réponse précise doit être donnée pour chaque projet et c'est ensuite que nous pourrons envisager tous les arguments pertinents y compris ceux qui ne sont pas faciles à exprimer en termes économiques.

Etant donné que nous nous trouvons en Orient, nous aimerions nous exprimer en termes de symboles, de contes de fées, des trésors et des dragons qui veillent sur ces trésors. Comme nous ne parlons pas d'extraction minières, notre trésor consiste donc dans l'espace souterrain que nous avons sous nos pieds et qui est prêt pour un certain nombre d'usages et de buts.

Les dragons représentent les divers problèmes et les dangers qui se feront jour au cours de l'exécution et de la construction et de l'utilisation. Beaucoup d'entre eux ont été discutés au cours de ces dernières journées et nous nous sommes rendus compte qu'il était pratiquement toujours possible de vaincre ces dragons pourvu que l'on soit prêt à faire les efforts suffisants. La question réelle est donc de savoir si les trésors sont d'une valeur telle qu'il nous faut combattre les dragons pour nous assurer le trésor.

C'est là que l'on appelle en général une analyse de rentabilité. Les Trésors comprennent d'abord le sol qui nous fournit un espace. C'est là déjà un trésor important et nous pouvons en profiter en mettant certains de nos trésors sous le sol où ils seront plus en sécurité, protégés contre la chaleur et le froid, le son, les vibrations, la pluie, la neige et les ennemis éventuels. En outre, la protection est une fonction à double sens et nous souhaitons peut être parfois mettre les dragons sous le sol afin de préserver certains de nos trésors qui sont en surface. Ces trésors comprennent également l'environnement, les zones de loisirs, les zones résidentielles, lieux de travail, etc. alors que les dragons que nous désirons reléguer en sous-sol sont sources de fumées, de bruit, de radiations, d'explosion. Voici donc des questions qui intéressent les pays en développement.

Depuis des temps immémoriaux l'homme a utilisé des tunnels et des cavernes en entrepôt, comme demeure, pour la protection et le transport. La technologie de l'extraction se développe très rapidement et nous avons plus d'idées sur la possibilité d'utilisation de cet espace souterrain. Cette nouvelle conscience de l'importance de l'énergie stimulé le développement du stockage souterrain, la conversion de l'énergie, mais ainsi que le besoin d'isoler les produits de la chaleur et du froid en utilisant le sous-sol. Il y a bien sûr beaucoup d'autres usages possibles du sous-sol.
Cette session a été organisée par l’AITES et son groupe de travail sur la planification du sous-sol avec l’animateur M. Jansson comme modérateur. Son groupe a préparé la petite brochure que je pense vous avez tous reçu et qui vous donne une courte présentation, du programme d’aujourd’hui, des activités de notre Association à l’usage de tous ceux qui ne sont pas très familiers avec nos activités. Dans cette brochure vous trouverez un questionnaire que nous vous demandons de remplir, afin que nous puissions savoir quelles sont vos idées et opinions.
A city consists of its buildings, the streets, the shape, and the people. The city is where we experience living, working and mixing.

People and activities fight to live on top of a city, in the sun in the fresh air, able to overlook the urban landscape. At ground level, people and activities fight to be in the best position for commercial exchange, for moving quickly, for space to store cars and goods, and to find a place where they can relax. Under ground, are foundations, pipes, cables, sewers, and in basements, storage of things most necessary for the city. Another battle is going on there between the owners of facilities beneath the surface, to break through the pavements for maintenance and repair.

The city has been developed by generations of people, through demands and visions of a better urban life. One of the dreams was that technical innovations would exclusively serve the people.

Visitors consisted of plans for local industrial traffic to travel on a level below the surface, feeding fuel and goods at this level for the city's needs. On a third level would be space for sewers, long distance trains, and garages for cars and small aircraft. All this to produce safe, noiseless and pleasant cities.

What came out of the vision?

The city pattern has been overwhelmed by unbelievable urban extension. The city itself has been rapidly overcrowded, with buildings in attractive sites in limited areas, leaving completely insufficient space on the ground for the increase in traffic. Noise, air pollution, crowding and the lack of ground space forced people to live outside the city. Cars are crowded into the landscape close to nature and recreation areas. The increasing traffic has made its way through urban areas on highways often separated from the original pattern of streets. The city has been reduced to an area of work and commerce, and only to a marginal extent used for living, and this mainly by the poor.

What about vertical development? To some extent, this vision has been realised. Chicago is one city in which tunnels have been constructed in streets for coal distribution and transport of ash. The tunnel system has also been used for ventilation of buildings. The muck excavated from the tunnels was spilled out on the shore of Lake Michigan and is today the foundation of a valuable city property.

However, you do not find streets for loading and unloading underground. In many big cities you can find a train system that transports people below the street surface, but these are only in the most densely crowded business areas.

Most cities today can be recognised as incomplete, each fighting for its economy, environment and social reputation. In addition, there are more and more expensive energy-demands. People in suburban areas meaninglessly commuting to the inner city. The city itself is in visual and social disharmony, and is also in disharmony with the suburbs. We have run into the city dilemma of today.

What is the way out of that dilemma? I believe there is a demand for a new Utopia, where current demands on energy, economy and ecology are considered. I am convinced that the subsurface offers possibilities which, so far, have been all too little recognised. The relationship between the various interested parties in urban development has, however, changed since the beginning of the century. The new Utopia must be a political rather than a technical one. Decision-makers of our future society must be convinced that the sub-surface is there and offers several solutions. We have the urbanisation, we have the city, we have the population. The new Utopia has to be developed in the living room of the existing society.

The city planner has the task of examining the conditions for changes towards a better city life. My experience is that there are three groups of problems which restrict the wider use of the subsurface. They are legal constraints, technical hesitation, and psychological impact.

The right of ownership goes from the surface to the centre of the Earth. In many countries, the right of this position of the underground strictly follows the right of ownership. In city blocks, the owner has this position of the underground used for basements and foundations of buildings. The only space left for public amenities such as pipes, cables and tunnels is below the streets and the parks. However, somewhere down deep, the possibilities for private use end. Here, there is an endless space which could be available for public use.

In our country, legal administrative practices have been developed, which allow the owner of an establishment to expropriate the right to pass his neighbour's properties underground. The practice has brought about simple administrative routines to obtain permission and to have the right recorded. This is very important for regional, economic and feasible use for the underground. God, in creating the world, lacked foresight—he did not create the geology of the earth in accordance with the city. The economy and ecology of using the underground is decisively dependent on sensitive obedience to geological formations.

Stockholm, located on islands, and the built-up areas on the mainland from Lake Miller to the Baltic, are affected by special limitations caused by many waterfronts. Right under blocks of old and picturesque buildings, various generations of tunnels have been constructed for railways, different metro lines, sewage and telecommunication. The green area contains a parking garage which can also be used as a bomb shelter. Geological conditions in the area are such that it has caused crowding of the underground.

Renewal of the most important part of the city centre with a main metro station was carried out on many underground levels using cut and cover work. It consists of metro lines, a thoroughfare for street traffic, loading streets, parking garage, and storage—all underground.

On top, a new shopping area, administration buildings, and a new Parliament building are built.

By regulations in town planning legal rights to the underground are limited to seven, sometimes ten, metres below the surface for most of the blocks within the inner city. A general right is also given to use the space beneath the boundary for tunnels. I believe that consideration of the
OPEN SESSION

MR. B. JANSSON

subsurface in this way could bring forth new demands and suggestions for its use. The ground level could become more objective for living. An underground tunnel system for rational transportation of goods, developed in the deep free zone, may be just the support the city requires.

But now we come to technical hesitation. Great effort has been expanded on sub-surface development. The whole construction industry concentrates on solving problems on the surface, or just under the surface. But sub-surface constructions have been used only to avoid severe conflicts in various specific areas, and have been carried out by comparatively small group of contractors. Experience of underground works is limited and the construction industry is conservatively bound to the surface. Only the mining industry and companies specialising in tunnelling, have reached a very high level of competence of underground construction. Conservative attitudes also restrict the builders. Knowledge of the geology below cities is sparsely recorded and an analysis of the conditions for underground construction is, as a rule, lacking.

You should know what kind of structure you have below your feet. Is it problem-full or problem-free? Which area is most suitable for underground construction? Where are the faults and crush zones? How will ground level be influenced by an underground installation?

The cost of construction varies greatly in different geological formations. According to Scandinavian experiences a cut and cover tunnel in soft ground is three to four times more expensive than a hard rock tunnel. A shield tunnel or an immersed tunnel will cost 10 to 15 times more than a hard rock tunnel.

In a more or less homogenous formation, you can quite easily calculate the cost of construction by using an adequate investigation of the geological conditions. You count the excavation cost, the strengthening of the ceiling cost, and add the cost for administration, planning, inspection and maintenance, which together are, say, 25 to 35%. Excavation, strengthening and ceiling costs are related to the width and the discontinuity of the tunnel or the rock cavity. Ambitious geological surveys and cost calculations based on this are necessary for planners, local authorities, possible clients, and contractors to be able to consider a reasonable underground location or function.

I would like to review a range of projects which have been located underground in Scandinavian countries, often within the boundaries of the city. These include cold store in Stockholm, the rock cavern saving energy and offering a stable, low temperature; an attractive recreation centre in Norway, with a swimming pool: district heating served by a heating station underground, located in the best position for distribution; oil storage in several areas located in the underground of cities (you will remember the Rockstore77 symposium and the presentations there). Within the field of energy conservation, you should consider energy storage underground. In this case, a hot water reservoir is connected to a town and to a thermal power station. Subterranean hydro-electric power storage could be located deep down and used as a peak load station of considerable size would provide a standby to prevent electric power failure. The tremendous volume of excavated rock would provide a supply of crushed material for many years.

Some of you have visited the Sheperla sewage treatment plant outside Stockholm. Close to a pleasant residential area, it is located underground serving up to one million people in other suburbs. The cost of different sub-surface sewage treatment plants compared with conventional surface plants is about the same.

Multi-purpose tunnels have been used to a large extent in cities. A cost comparison shows the same cost of surface and sub-surface installations in the town centre, but higher costs for multi-purpose tunnels in new areas. As a rule, multi-purpose tunnels are chosen because of better availability and safer maintenance. Summarising this part of my presentation, I would like to ask: Is there any reason for technical hesitation as far as sub-surface use is concerned?

What about psychological impact, then? Human reactions during time spent underground have not been scientifically investigated. I would prefer to make my personal comments. Three aspects should be considered—the entrance, the inside, and what will happen to me when I am there?

The entrance gives confidence to the activity inside. Visitors to the Swedish wines and spirits monopoly in Stockholm enter the building and meet an artistic corridor. They lose every sense of being in a rock cavity and this is not only on account of the wine!

A nuclear power station located underground a few kilometres from the centre of Stockholm has been in operation for 10 years. The station is used for district heating, and met no objections to a great extent because of the friendly exterior. At the moment, no design, even if carried out by the most gifted architect, will have any influence on the objections against the storage of nuclear waste even if it is located underground. A futuristic sketch of a city contains industry deep down in the sub-surface. As a working environment, this would not be accepted today, as it is interpreted as being at the bottom of the social scale. The new metro line to the north of Stockholm, caused a big debate as to whether it should be located partly or completely under the surface. The protest against deep location has today given way to successful acceptance. The interior is pleasant and colourful.

Metro stations have been designed in different ways. The new Paris metro reminds one of the atmosphere in outer space, the Stockholm metro reminds you of a natural cavern who is easily accepted by the public.

The rock itself has achieved congenial integration in the rock church in Helsinki, the Altar piece being a piece of the rock. For those who work permanently underground, conventional favours such as light and ventilation, and an outbreak of fire are the most worrying factors.

Summarising the chapter on psychological impact, I would like to say that careful design, observing both ordinary human behaviour and conventions, will effectively reduce psychological objection to underground use. The Swedish research and development report, 'Planning of sub-surface use,' is a comprehensive investigation of the planning procedure, especially in Sweden. You will, however, also find features with a universal application.

Sub-surface planning must take into consideration a series of fields of specific knowledge. Demand for sub-surface space must be based on specific statistics and investigatory studies. Cost benefit analyses, as well as liability and indemnity, are more general for all kinds of underground use. The law and administrative rules should be recognised in a way which avoids unnecessary restriction of underground use, but which gives reasonable regulations for safety.

The following fields require specific knowledge of sub-surface construction and sub-surface use: internal environment, registration of sub-surface establishments, hydrology, geology, ecology, soil mechanics and tunnelling technology. The conclusion of the Swedish report is that sub-surface planning should be seen as an integrated planning within society's planning as a rule, that is, in close connection with surface planning. Sub-surface use must be considered in national planning, eg, strategic oil storage, regional planning, eg, water transport and water supply, community planning, eg, local sewerage, and in project planning. An exchange of conditions and demands is required between authorities responsible for overall planning, and bodies responsible for the planning of particular functions. The variable result of such an exchange depends on the level of knowledge and understanding obtained. Step by step development of integrated planning procedure is listed. From a district planner you expect a decision on detailed studies, from local area planning a decision on implementation. Directives by the authorities, legal sanctions and consideration of means, gives the basis for decision on construction.

Swedish law does not require a building permit for a tunnel or rock cavern. Legal regulations cover different kinds of functions, contained in tunnels and cavities. This is insufficient. We suggest that tunnels and sub-surface cavities be considered as buildings. This is a basis for the recommendations given to the government authorities. Legislation and directions from the national Board of Urban Planning should
OPEN SESSION

MR. B. JANSSON

comprise demands for the registration of sub-surface establishments; demands for the registration of geological information from pre-investigations and from complete establishments; demand for planning of sub-surface construction which should comprise outline planning, partial planning and detailed planning; demand for obligatory drill analysis, description of consequences and cost benefit analysis, in all preparatory examination of sub-surface construction; and demands for continuous checking up and control of sub-surface establishments.

Departmental responsibility for sub-surface construction should be given to an official expert to which details of sub-surface construction are referred to for consideration. Terraspace will be an important resource in human, economic and urban development only if we, the people, and the responsible decision-makers come aware of it. The new Utopia will be a reality when engineers, planners, clients, contractors and authorities, co-operate in the common interest to make the sub-surface part of the physical totality of society.

TERRASPACE
MOYEN DE
DEVELOPPEMENT
ECONOMIQUE DE
L'HOMME ET DE
LA VILLE

Le milieu urbain est celui où se développent la vie quotidienne, les activités et les échanges humains. La stratification traditionnelle de ces activités — la vie et les échanges commerciaux, les loisirs et les transports occupant la surface, et le sous-sol étant réservé aux conduites, aux câbles, au stockage, aux égouts — se trouve bouleversée par le besoin d'une vie plus agréable, par des innovations techniques et la vision d'une ville nouvelle, où le sous-sol serait exploité sur plusieurs niveaux pour les transports industriels, les trains longue distance, la voirie, les parkings, la surface se trouvant ainsi libérée de toute servitude et pouvant être consacrée à la création de villes sûres, calmes et agréables.

Mais cette vision s'est trouvée démente et le centre des villes a été réduit à une zone de travail et de commerce.

Pourtant la vision d'une ville idéale a pu être réalisée. Chicago est l'un de ces rares exemples. Des tunnels ont été construits sous les rues pour la distribution du charbon et le transport des cendres, pour la ventilation des immeubles. La boue provenant du creusement de ces tunnels a été utilisée pour remblayer les rives du lac Michigan.

Même si l'on trouve quelquefois des systèmes de transport de personnes en souterrain, la plupart des villes apparaissent comme inachevées. Le dilemme aujourd'hui est que la ville présente un manque total d'harmonie visuelle et sociale, à la fois en elle-même et avec ses faubourgs.

Comment résoudre ce dilemme? En se rendant compte des possibilités qu'offre le sous-sol. En fait, les relations entre les parties concernées par le développement urbain ont changé depuis le début du siècle. La nouvelle vision de la ville est devenue plus politique que technique. Les planificateurs doivent étudier les conditions qui amélioreront la vie urbaine.

Une utilisation plus large du sous-sol se trouve limitée par des contraintes d'ordre juridique, des hésitations techniques et un impact psychologique.

Dans de nombreux pays, le sous-sol appartient à celui qui appartient la surface du terrain et le seul espace laissé disponible pour les équipements publics, se situe sous les rues. Il est cependant possible d'exproprier et de construire sous une propriété privée ce qui ne résout pas pour autant les problèmes techniques et les hésitations qui se font sentir jour à leur propos.

Les conditions géologiques suffisent souvent à limiter le développement des villes en souterrain. Cependant, l'exemple de Stockholm montre que ceci n'est pas toujours le cas; la ville est construite sur un archipel, et les équipements publics se trouvent maintenant sous les monuments et les parcs. En fait, dans le cas présent, les conditions géologiques ont provoqué un "surpourement" du sous-sol, comme en témoigne la station principale du métro au centre de la ville, et qui comporte des passages souterrains pour piétons et voitures, des voies de desserte, des parkings, des zones de stockage. Le tout est recouvert par des magasins et un nouvel Hôtel de Ville.

D'autres hésitations techniques peuvent résulter du manque d'informations et du manque d'expérience dans le creusement des tunnels. Seules quelques entreprises ont atteint un niveau de compétence élevé. Peu connaissent les tenants et les aboutissants d'une construction en souterrain, le niveau des coûts qui change considérablement en fonction des conditions géologiques, de la méthode choisie pour le creusement, le soutènement... Et pourtant, les possibilités d'utilisation du sous-sol sont vastes, il n'est besoin pour s'en persuader que de se référer à ROCKSTORE 77 et aux réalisations évoquées à cette occasion, en particulier en Scandinavie. De fait, devant la multitude et la variété des ouvrages réalisés, on peut se demander s'il existe une raison d'hésiter techniquement.

Mais les hésitations peuvent aussi être psychologiques. On n'a pas encore étudié suffisamment le comportement des gens en sous-sol. On en reste donc aux observations qui, selon moi, se situent à trois niveaux: l'entrée, l'intérieur et ce qui va se passer une fois que l'on est installé là. C'est l'entrée qui donne le ton, qui inspire confiance et enlève toute appréhension de se trouver en sous-sol. Les réticences sont grandes à travailler, voire simplement à voyager, en souterrain. Il convient donc d'assurer un environnement plaisant et coloré, qui rappelle les conditions extérieures ou qui intègre artistiquement le milieu souterrain. Ceux qui travaillent en souterrain se plaignent principalement du manque de lumière et de ventilation naturelle, et craignent les incendies. Il est certain qu'une étude précise tenant compte à la fois du comportement humain ordinaire et des conventions pourrait réduire efficacement les objections à l'utilisation du sous-sol. Le rapport suédois "Planification de l'utilisation du sous-sol" donne des indications détaillées sur les projets, en particulier en Suède, sur les facteurs à prendre en compte, et conclut que l'urbanisation en sous-sol doit être considérée comme partie intégrante de la planification de la société, au même titre que l'urbanisation en surface, à tous les niveaux: national, régional et local.

Cependant, la planification suppose de bonnes relations entre les autorités responsables de l'urbanisation d'ensemble et les institutions responsables de fonctions déterminées.

Les lois régiissant le sous-sol sont jusqu'à présent insuffisantes, tout au moins en Suède: nous suggérons que les constructions souterraines soient considérées comme des immeubles. La législation et les directives du Bureau National d'Urbanisation devraient comporter des procédures pour l'enregistrement des établissements souterrains, pour les informations géologiques, pour la planification des constructions en souterrain, pour un permis de construire en souterrain, pour une analyse obligatoire avant perforation, pour un contrôle continu des ouvrages souterrains.

La nouvelle vision de la ville deviendra réalité lorsque ingénieurs, projecteurs, clients, entrepreneurs et autorités coopéreront dans l'intérêt commun de faire du sous-sol une réalité physique de la société.
UNDERGROUND CONSTRUCTION

Interest in underground construction is growing rapidly throughout the world. A type of construction that was previously relegated primarily to public works and defense projects, is increasingly viewed as a viable alternative to surface location for human habitation. Underground buildings are being used at an accelerated rate for residential, commercial and industrial purposes.

Some of the factors that are leading to the greater use of the underground for human habitation are, one, improvements in building technology which have reduced the cost of excavation and underground construction; two, efforts to conserve energy by seeking constant sub-surface environmental conditions; three, escalation of world prices of real estate, painfully felt here in Tokyo, by the way; four, shortages of space, particularly in areas of high urban density; and five, increase in environmental and aesthetic sensitivities to the existing built and natural environment.

I am now going to present eleven sub-surface projects in the United States that I have selected for the design priorities, geographic distribution, building type, and, ultimately, the availability of information. I have not attempted to be comprehensive or all-inclusive: this is just a sampling of some of the underground building projects in the United States at the moment.

The first three projects are residential, the second four are on university campuses and one project, a commercial project, is over 10 years old. There are two elementary schools, one either side of the United States, and finally, a religious building.

This is project number one; a dune house, Atlantic Beach, Florida. The dune house consists of two one-bedroom apartments, each containing 750 square feet, which are set into an existing sand dune to preserve the original site, and environmental character, for neighboring structures built above grade to the north and south. The building area in total is 1500 square feet, the cost was $50,000 and about $33 a square foot.

The construction was completed in 1975. There were existing buildings on the site, and one had to be very careful not to destroy views and the relationships among the existing buildings — it was one of the major considerations for putting this building underground. The construction is a thin shell, designed by computer. Project number two is a hilltop house in central Florida, the same state as the previous project. The owner wanted a residence that would provide panoramic views of the cypress groves and the rolling terrain of Florida, and he wanted to build on the highest hill, but the architect persuaded him not to destroy the hill by putting a structure on top of it, but to put a structure into the hill. The building area is 3,300 square feet, and this building was completed in August 1975. Although the principal reason to go underground was aesthetic a secondary reason was the reduced operating costs. In Florida there's a very hot, humid climate and air conditioning far exceeds the need to keep cool. Earth insulation is very effective in this area. Also the natural vegetation on the slopes reduces the exterior maintenance considerably.

Project number three is in Michigan, which is very far north in the United States — a very cold climate. Here the property owners had 160 acres and wanted to develop a sub-division of 92 units on the site. Because of the severe winters, they explored the possibility of going underground, and they came up with 92 underground residential units. The building area, including the total excavation, is 4,750 square feet. The total construction cost is $118,750, and about $25 a square foot. Substantial energy savings are expected in this development.

Project number four is the undergraduate library at the University of Illinois, Urbana, Illinois. The library is of modular design, constructed to provide maximum flexibility of space. It consists of two floors, of approximately 217 feet, by 241 feet, with a 72ft central court. A tunnel connects the undergraduate library with the general library building. The building area is 98,000 square feet, the cost was $4,240,000 at $42 a square foot. This building was completed in 1969.

An additional reason for building this underground library, besides the aesthetic one of being able to get across the campus and maintain the circulation pattern, was preservation of the oldest agricultural testing plot in the United States. Also a consideration, was preserving the historic buildings around it.

Project five was the Pewsey Library, Harvard University, in Cambridge, Massachusetts. The Pewsey Library is a three story underground library, built in close proximity to three other Harvard University libraries. It houses rare archives, manuscripts, maps and theatre collections. The overall dimensions are 150ft by 300ft. Construction started in June 1973 and completed in December 1975. The total building area is 87,000 square feet at a cost of $18.4 million, at $69 per square foot. Views across existing library buildings, have been preserved completely by putting this building underground. Another factor in this underground construction is the protection of the priceless and historic archives. Security reasons were considered very important.

Next project is the bookstore and administration office in the University of Minnesota, Minneapolis, Minnesota. This is a courtyard, or atrium-type, sub-surface building. The overall dimensions are 200x200 feet. There are three levels below ground. The lowest floor is 41 feet below the surface. The bookstore administration office was completed in 1977 at $51 a square foot for 83,000 square feet. There were four major factors in deciding to build sub-surface. The original planning for the building included these considerations: the preservation of scarce open space in very densely urban campus; two, the preservation of views of two historic campus buildings; and three, maintenance of the pedestrian access across this open area.

During the design phases of the building, an additional factor came into play, and that was the conservation of energy. This now has become a very, very important aspect. In fact the net energy savings over conventional building are expected to be 80-100% during the heating period, and approximately 45% during the cooling period. In addition to the conventional mechanical systems, there will be 6,000 square feet of solar collectors to augment the energy needs.

Project number eight is the cafeteria of the Monsanto Company in St. Louis, Missouri. This project was completed in 1968. It was an office complex in an open area. These office buildings have been connected under the ground by a system of tunnels. The cafeteria serves a meeting hall. The reason why it was put underground was to maintain the existing aesthetic relationships of the buildings that were there. The main thing interesting about this building, is the very exciting interiors that they were able to get, expressing the structure.

Project nine, on the East Coast is Terraset elementary school in Reston, Virginia. A building within a hill describes Terraset. The roof and most of the schools are covered by two to three feet of earth. The grassy area on the roof is a play area, and the mechanical structures for heating, ventilating and air conditioning and sky-lighting, are treated as sculptures in the landscape. The dimensions of the buildings are 383 by 255 feet. The cost of the building was $2,864,000 or about $38 a square foot, which means that the building was not excessively expensive.

The programme given to the architect was that the building should be energy-conserving, and that was the main goal in putting the building in the hill. The energy costs so far have proved to be less than half of schools of similar size in the same location in the United States. The school also has a solar collector. Access is provided by cuts in the sides so that heavy equipment can be brought right in.

Project number ten is a new school. This is Fremont Elementary School, Santa Anna, California on the West Coast. The problem the designer faced was to build a school for 850 students on a 2.8 acre site. That is California state requirements for withstanding earthquakes. The building also had to conform to the scale of its neighbours. The solution was to recess the 46,000 square foot structure into the ground, and make the roof area a
CONSTRUCTIONS SOUTERRAINES

Maison construite dans une dune, à Atlantic Beach, Floride.

Elle se compose de deux appartements à une chambre, de 750 pieds carrés chacun, installés dans une dune de sable existante pour préserver le site et la construction voisine. La construction a coûté $55,000 et a été achevée en 1975. La structure est une coque mince conçue par ordinateur.

Maison construite au sommet d'une colline, au centre de la Floride.

Le propriétaire désirait avoir une vue panoramique et a accepté que sa maison soit enterrée pour ne pas détruire le paysage. La surface construite est de 3300 pieds carrés. La principale raison était esthétique, mais il était aussi important de réduire les coûts de conditionnement d'air, nécessaire en raison du climat très chaud et humide de la Floride. En outre, la végétation naturelle sur les pentes réduit considérablement l'entretien extérieur.

Maison dans le Michigan

Le problème était ici de se protéger contre le froid. Les propriétaires souhaitaient l'extension de leur maison sur 92 acres, ce qui a été réalisé en sous-sol, pour un coût total de $118,750. D'importantes économies d'énergie sont attendues.

Bibliothèque à l'Université de l'Illinois, Urbana, Illinois.

Elle est de conception modulaire, afin que l'espace disponible soit le plus souple possible. Les deux étages de l'ouvrage (environ 217'/241 pieds) sont reliés par un tunnel au bâtiment principal. La surface de l'ouvrage construit en 1969 est de 98,000 pieds carrés, le coût de $4,240,000. Les raisons qui ont décidé de cette construction étaient d'ordre esthétique, il fallait aussi maintenir le schéma de circulation dans le campus et préserver le plus ancien établissement d'expérimentation agricole des Etats Unis.

Bibliothèque Pewsey, Université de Harvard, Cambridge, Massachusetts.

C'est une bibliothèque souterraine à trois niveaux. Elle abrite des archives rares. Les dimensions hors-tout en sont 150 pieds x 300 pieds. La construction, terminée en décembre 1975, a coûté $18,4 millions. La perspective des bâtiments a ainsi été entièrement préservée, et les archives sont stockées en toute sécurité.

Librairies et bureaux d'entrée de l'Université du Minnesota, Minneapolis, Minnesota. Il s'agit d'un bâtiment souterrain de type atrium, construit en 1977, dont les dimensions hors-tout sont 200 pieds x 200 pieds, et qui présente trois niveaux. Quatre principaux facteurs ont décidé de cette construction : préservation du peu d'espace libre dans le campus, préservation des perspectives des deux campus historiques, maintien de l'accès piétonnier dans une zone publique, enfin économies d'énergie.

Caféteria de la Monsanto Co. de St. Louis, Missouri.

Un complexe de bureaux est relié par un système de tunnels. La cafétéria dessert un hall de réunion. Elle a été construite en souterrain pour préserver les relations esthétiques entre les bâtiments.

Ecole élémentaire Terraset à Reston, Virginie.

Le bâtiment se trouve à l'intérieur d'une colline. Les structures mécaniques du chauffage, de la ventilation, du conditionnement d'air et les prises de lumière sont traitées comme des sculptures dans le paysage. Les dimensions sont de 383 pieds x 255 pieds, le coût s'est monté à $2,864,000. Les dépenses en énergie ne représentent que la moitié de celles nécessaires dans les mêmes conditions à l'air libre.

Ecole élémentaire Freemont, Sta. Anna, Californie.

Il s'agissait de construire une école pour 825 élèves sur un site de 2,8 acres. Le bâtiment devait être conforme aux règles de l'État de Californie sur la résistance aux tremblements de terre, et correspondre à la taille des bâtiments voisins. La solution a été de mettre 46,000 pieds carrés en souterrain et de transformer le toit en terrain de jeu. Plusieurs écoles ont été conçues de cette façon en Californie. On n'a relevé aucun problème chez les enfants résultant de leur séjour en souterrain.

Église abbatiale bénédictine, dans le Wisconsin.

La raison pour laquelle elle a été enterrée a été qu'il fallait minimiser la confrontation esthétique avec les bâtiments traditionnels du site. Il fallait aussi préserver le paysage et l'espace libre. Sa superficie est de 8950 pieds carrés, et elle a coûté $340,000.
OPEN SESSION

Y. WATANABE

SUBSURFACE USE VIEWED IN THE LIGHT OF COMPREHENSIVE CITY PLANNING

INTRODUCTION
In Japan, the inhabitable land area is very limited and the important regions are overpopulated. In 1975, 63,823,000 inhabitants representing 57% of the total Japanese population were crowded in urban areas which accounted for only 4% of the total area. It is therefore indispensable that these urban areas be utilized purposefully in conformity with city planning. For this purpose, it is necessary to make full use of land-use and building-volume-zoning and to develop urban facilities systematically.

From such a point of view, I would like to give consideration to the actual state of urban development and underground space in Japan, in particular subsurface use in relation to earthquakes and fires so characteristic of Japan and with emphasis on the effects of subsurface use on the environment. From an administrative point of view, the construction of underground shops is at present restricted in Japan. However, I would like to investigate the construction of such underground areas for the future, by way of subsurface use planning.

URBAN DEVELOPMENT AND USE OF UNDERGROUND SPACES
With the exception of underground use as basements in buildings this space is only used by public service facilities. Such underground public service facilities include railroads, parking places and passages.

VERTICAL USE OF LANDS FOR PUBLIC FACILITIES
Sufficient public space is not available because of the city structure in Japan. Since land prices are abnormally high in the urban areas it is necessary to be versatile in the use of these extremely limited public spaces. However, if land set aside for streets, traffic squares and other public facilities is used for other purposes, (for example, multi-storey car parks) it should be done only after thorough investigation, taking into account future development. Private enterprise is strictly controlled with respect to the use of public facility lands for profit-making purposes.

However, there are many cases of occupation of streets for construction of underground shopping areas. Such occupation of streets is permitted only in the following two cases:

(1) permission is given where it is proved difficult from a managerial and practical point to acquire a building lot in an urban area and construct a public parking place in this lot. In such a case, land cost is nil if an underground parking place is constructed.

However, since the construction of a stable underground structure plus its maintenance requires enormous costs, such an underground parking place often falls into financial difficulties if parking charges are uneconomically low. To offset this, the construction of an underground shopping area above the underground parking place is sometimes permitted.

(2) where roads include pedestrian and motor traffic, or in certain station plazas, the construction of underground passages would separate the flow of pedestrians from that of automobiles so increasing public safety. In this case, it would be ideal for the road managing body concerned to construct and maintain the necessary underground passages at their own cost. However, because of difficulty of financing construction and also of troublesome maintenance, the task may be given to a third party of a public character. Such a third party is permitted on behalf of the road managing body to construct an underground shopping area on the underground passage.

In addition, the station plaza, a typical traffic square in Japan, is not only an important facility serving as a traffic connecting point between railroad and urban roads, but is also a valuable public space. The local public body concerned who takes charge of the development and improvement of streets manages the development of such a station plaza jointly with the railroad operator concerned. Maintenance of this station plaza is carried out by mutual agreement. Consequently, a station plaza is suitable for construction of an underground public parking place. Construction of underground passages is also often required in this plaza to ensure a smooth traffic flow of pedestrians and automobiles. Coincident with construction of such underground passages permission to construct an underground shopping area may be given if both the local public authority and the railroad operator provide a long-term development plan for the station itself, and if they assume responsibility for implementation of such a plan.

Taking all these points into account further consideration must also be given to the following points.

First, since the use of underground public spaces is largely public, priority must be given to its use as a civic function. Secondly, since it is extremely difficult to demolish or reconstruct a firm and stable underground structure once constructed, it is necessary, in planning such a structure, to make a careful study of all aspects of its use for the long-term development of the urban area.

Thirdly, for a district where the use of underground space is essential and desirable it is necessary to positively determine its course in the comprehensive city planning, covering also peripheral areas, on a level of detailed planning in which the future picture of superstructures and other items is also drawn. Where subsurface use should be temporarily restrained such restraint must be strictly observed. Finally, since the underground spaces are enclosed, more strict disaster prevention plans, including fire precautions, must be observed.

DISASTER PREVENTION AND EARTHQUAKE-PROOF DESIGN OF UNDERGROUND PUBLIC FACILITIES
In Japan the most important problem for construction of underground public facilities is how to design them safe from combined disasters, such as earthquake/fire, earthquake/flooding, etc.

Underground public facilities range widely from subways to underground shopping areas, and their structural form varies from civil works to buildings. Therefore, the establishment of an
earthquake-proof design system for underground public facilities is pressing.

SUBWAYS AND OTHER SIMILAR PUBLIC UNDERGROUND STRUCTURES

Seismic forces influencing an underground structure include ground displacement or deformation during an earthquake; inertial forces due to dead load of the structure; earth pressure during an earthquake; and dynamic water pressure during an earthquake.

However, it is empirically said that underground structures can well withstand earthquakes, so an earthquake-proof design method has not yet been fully established for these structures. In fact, there are only a few instances of designs taking these seismic forces into full consideration.

It may safely be said that the subways in Japan have never been damaged by an earthquake in their 50 years' history. However, neither have they encountered any destructive earthquake since their construction. In addition, though recent researches have more and more clarified the behaviour of surface layers during an earthquake, the behaviour during a strong motion earthquake has hardly been clarified. As a result, re-examination should be made concerning earthquake-proof design of underground structures. Items to be re-examined include those below.

First, a connection between two structures having different response characteristics, e.g., between tunnel and station, may be subject to a large strain. Therefore, an expansion joint or other suitable means should be provided in such a connection to disperse the stress. In this case, waterproofing should be considered and the reinforcing bar arrangement should be designed so as not to constitute a structural weak point.

Secondly, tough materials should be used for construction of tunnels to cope with the deformation of the structure.

Thirdly, recent subways tend to be constructed increasingly deeper. In view of their construction and alignment, such subways inevitably pass through heterogeneous soil layers. Around a contact surface between heterogeneous soil layers, dynamic characteristics during an earthquake change abruptly, and a large strain occurs in both ground and structure. In planning such deep subways, therefore, it is necessary to examine their route, location, construction, etc.

Fourthly, systems of lighting, drainage, communication, etc. as well as the standby power supply should be arranged in an appropriate manner.

A draft of the Guide for Earthquake-proof Design of Sunken-Tube Tunnels has recently been published. It adopts a displacement method as a design method. This is based on a concept that the tunnel deformation is caused by a displacement or deformation of the ground around the structure.

For subways, the establishment of an earthquake-proof design method is pressing, and seismometers, displacement seismometers, strain gauges and other instruments are buried at various points to analyze theories and collected data. It is considered that a design system based mainly on the displacement method rather than the conventional seismic coefficient method will be established for subways.

As for the disaster prevention of subways, the disaster prevention standards for the station structure are stipulated by the Building Standard Law and the Law for Prevention and Extinction of Fires as is the case with underground shopping areas. In particular, it was decided in 1975 to apply new standards to underground stations and tunnels connected therewith. These new standards cover mainly non-combustible construction of buildings, installation of alarm systems, installation of information systems, equipment between stations and installation of fire extinguishing systems. For new subways constructed from 1975 and downward, equipment should be installed in conformity with these new standards. The existing subways are also required to improve the equipment to the same standards as soon as possible.

In stations and sections crossing rivers and other necessary places, measures for escape are provided in the event of a submersion caused by a typhoon or storm. Automatic water-proof shutters, an emergency power supply and other necessary disaster prevention measures are provided.

Consequently, it may safely be said that the present subway structures pose no problem from a viewpoint of both aseismicity and flooding. Thus, "it is recommended that passengers should obey the guidance of guards in the event of an accident". If power failure occurs, emergency lighting will immediately start to operate, but passengers should wait the instruction and guidance of guards. If they leave cars, they may be in danger of electric shock from electric conductors (third rail). In the event of cracks in tunnel walls and resulting floods escape to the surface is effected after safety and emergency lighting systems come into operation.

UNDERGROUND STRUCTURES AS PUBLIC SERVICE FACILITIES WITH UNDERGROUND SHOPPING AREAS

For this category of underground structures, the earthquake-proof design calculation is made as a rule by a seismic coefficient method, but in cases where the apparent unit weight of the structure is smaller than the unit weight of the surrounding ground, such calculation is made by a response displacement method. In addition to the design of the structure proper, it is important to examine its bearing capacity and deformation performance of the surrounding ground, so that the structure may be safe from sliding, inclining, overturning, etc. Safety from earthquake effects in these underground structures is judged from a synthesis of stress and deformation conditions, stability of the ground around the structure during an earthquake, dynamic characteristics of the structure and the earthquake-proof design calculation method, etc.

For an underground shopping area plans exist for a catastrophe in the event of an earthquake or fires. In these circumstances, the behaviour of ground and structures during an earthquake are now being gradually clarified, but there are still some difficult problems to be solved.

As already mentioned, the present earthquake-proof design method is based mainly on a seismic coefficient method: design is made by multiplying surface and underground portions by different horizontal seismic coefficients. Normally, however, lateral soil pressure and water pressure during an earthquake are not considered. The design seismic coefficient is generally taken lower for the underground portion than for the surface portion. This is based on the fact that, according to the results of earthquake acceleration is lower underground than on the surface—about half that on the surface.

Though standards for determining this design seismic coefficient for underground design seismic coefficient for underground shopping areas are based mainly on those specified by the Japanese Architectural Society, any design seismic coefficient is not expressly specified for underground structures. For these various standards are applied. In addition, the aseismicity of structures is ensured firstly by increasing the overall rigidity, for example, through appropriate arrangement of earthquake-proof walls or adoption of large framing. Secondly by making connections with substantially no expansion joint, provided in case of a high underground water level from a point of view of water-proofing.

For problems associated with earthquake-proof design, the present method takes little consideration of the influences of the surrounding ground, but active and passive earth pressures naturally act during an earthquake. Influences of the deformation of the surrounding ground on the structures are very great. Consequently, it is desired to establish a design method taking into account this factor. In fact, current thinking is directed toward this factor. In addition, special considerations must be given where an underground shopping area is to be constructed in soft or sandy ground susceptible to liquefaction. Furthermore, where other buildings are attached, it is inevitable that they will exert an influence on the underground shopping area during an earthquake. Designs taking these points into consideration also are required.

For future expansion of an underground structure to a deeper point, a flexible construction method is adopted. It is considered that the floating island method is suitable for this purpose. This method is applied by driving steel pipe piles into
boreholes made by armour drills to form temporary columns; then placing concrete in these steel pipes to reinforce the temporary columns; and then by excavating the portion corresponding to the first level of basement and welding the floor girders of the first level to the temporary columns. Finally, the floor concrete for the first level is laid. This construction system is developed to the second level of basement, then to the third, and so on. By this method the temporary columns are lined with reinforced concrete to form permanent columns.

Basic guidelines for disaster prevention of underground shopping areas and other similar underground facilities were published by the Central Liaison Council on Underground Shopping Areas in 1974. According to these guidelines, new construction and extension of underground shopping areas is strictly restricted. As a general rule, such development is not permitted. This is based on the concept that a disaster in an underground shopping area is much more serious than that on the ground surface. For example, a fire in an underground shopping area is considered much more dangerous than that on the ground surface in view of smoke, gas, fire fighting and escape. In the event of fire in an underground shopping area, the rush of shoppers to emergency exits is likely to provoke a catastrophe.

Admittedly, existing underground shopping areas are not allowed to stand as they are. As far as disaster prevention measures of these areas are concerned, much attention is being paid to their structural design, full fire fighting equipment and smoke evacuating systems, improvement of disaster prevention equipment and escape guide passages, etc. However, there are some technical limitations in carrying out all these precautions, and so it has been decided to restrict the use of such areas. The regulations for these underground shopping areas consist of the Building Standard Law and the Law for Prevention and Extinction of Fires.

The Building Standard Law covers mainly construction of public underground passages and shops. Passage width, ceiling height, emergency lighting, drainage, smoke evacuation, limitation of interior decoration, ventilation, etc. are specified. On the other hand, the Law for Prevention and Extinction of Fires covers the equipment and systems which must be provided against fires. Fire extinguishers, sprinkler and other fire extinguishing systems, alarm systems including automatic fire alarm and emergency alarm, escape systems including emergency exit guide lights, smoke evacuation systems, etc. are specified.

To prevent disasters in an underground shopping area, it is necessary to limit the number of restaurants, install guide lights, use smokeless materials, and eliminate irregularities of floor surface around exits, etc. In the event of an earthquake, it is also essential to reinforce ceiling boards, check gas cock and locate convenient fire extinguishing equipment. In the event of underground water flooding, pumping of sewerage water and disinfection after dewatering should be carried out to prevent infectious diseases.

FUTURE DIRECTION AND PROBLEMS OF SUBSURFACE USE PLANNING

Coincident with the growth of a city, the city structure develops over a wide area and its focal points such as civic centre, shows a vertical expansion. This vertical expansion usually incorporates a host of public service facilities. If the city growth exceeds both the social limit and service capacity, then the focal points of the city is divided and the structure is transformed into a multi-civic-centre type.

Under such a recurring process, a stable and growing pattern of subsurface use is desired. Accordingly, use of the subsurface will be directed towards an improvement of services, having economy and safety well balanced and also having reliable functions. Under that point of view, three-dimensional urban patterns and multipurpose collective culverts capable of containing all public utilities should be included in planning the use of underground spaces.

There are, however, some environmental conditions to be considered in the use of underground spaces, namely, temperature and humidity conditions, air pollution, bacteria in air, lack of sun, oxygen-deficiency, noise and working environment. Temperature and humidity effects demand high temperature and humidity control and also wind considerations. As for air pollution, all exhaust gas from the parking area should be shut off to prevent carbon monoxide poisoning, and a dust collector should be provided to prevent subterranean asthma caused by suspended dust. Measures against bacteria in air, control of odor, and other safety measures for human beings and animals. Also, an appropriate system for dealing successfully with the summer season, as well as a solution for limiting the number of persons occupying an underground space, should be studied. Lack of sun should be solved by arranging working hours so that persons may bask in the sun. To cope with oxygen-deficiency, sand and gravel containing iron should be removed by paying attention to so-called “blue soil” and, in addition, it is mandatory to provide vent holes. For noise control, electrical and mechanical rooms which are major sources of noise should first be isolated. In addition, there must be improvement of the working environment to reduce eye fatigue, by using dust control and increase in illumination of lighting.

THREE-DIMENSIONAL URBAN PATTERN

Development of a city to a three-dimensional urban pattern requires a combination of three elements: a commercial/business population of a considerable scale, the land use pattern to be specialized and sophisticated, and a comprehensive traffic supply system having reliable accessibility. Admittedly, these three elements have a co-relation with each other. It is therefore necessary to survey and determine in a co-related manner how each of these elements can work a stable growth while maintaining a good environment.

In a metropolitan area, the control of commercial and business populations can be achieved by developing the land use pattern to a multi-civic-centre pattern. On the other hand, the network in the form of looped routes in the actual civic centre should also be improved and strengthened. Thus, a comprehensive traffic system based on looped traffic networks should be established to ensure a traffic space configuration capable of coping with future urban development.

Consequently, it may be said that the future urban pattern will be a three-dimensional pattern based on loops and that its traffic supply system will take a ring and ladder pattern. It will take a long time to develop an already established city gradually to this future pattern. It is essential that permission and proper guidance should only be given to the construction of underground structures following this pattern, because underground structures once constructed cannot be relocated with ease. In other words, use of the subsurface centred on public service and utilities is considered as a core for future development in which a group of civic centres are developed along a loop principle. In an existing district where it is desired to reduce the weight of civic functions, severe restrictions will be required so that underground structures only for use of public facilities may exist.

CONCEPT OF MULTIPURPOSE COLLECTIVE CULVERTS

Because of the diversification and improvement of city life, new material flow pipelines, including city waste, district air-conditioning and oil pipelines, are demanding more and more collective culverts, which in the past have also been used for carrying electric power cables, telephone, gas, waterworks and sewerage. Now, in addition, because of horizontal and vertical expansion of a city, it is necessary to study if these can be used to meet new needs for CATV and new traffic systems.

Although citizens desire to preserve old and tasteful city beauty, the quality of life in this environment requires modern and sophisticated systems. It is the consolidation of various underground public service and utilities that constitutes a breakthrough for this modernization. Consistency should not be conservative, but should meet diversified needs leading to a brilliant future. This can be realized by implementation of this multipurpose collective culvert plan. For these collective culverts, it is recommended that a study be made of a system having a multi-grid multi-rigid-frame construction of floating island construction.
UTILISATION DU SOUS-SOL DANS LE DÉVELOPPEMENT URBAIN

Y. WATANABE

Au Japon, les zones habitables sont très limitées et surpeuplées. Il est donc indispensable que l'utilisation des zones urbaines se fasse de façon opportune.

Une attention particulière doit être accordée à l'utilisation du sous-sol en liaison avec les tremblements de terre et les incendies qui sont caractéristiques du Japon, et il faut mettre l'accent sur les effets qu'une utilisation du sous-sol sur l'environnement.

Jusqu'à présent, l'espace souterrain n'a été utilisé que pour des équipements publics, comme les mètres, les parkings et les passages souterrains, puisqu'on ne dispose pas d'un espace public suffisant, et que le prix du terrain est anormalement élevé. Cependant, il existe de nombreux cas d'utilisation de l'espace situé sous les rues par des centres commerciaux souterrains. Il faut préciser que la réglementation est très stricte et ne permet l'occupation du sous-sol pour de tels centres que dans deux cas:

1) Si l'acquisition d'un lot à construire dans la zone urbaine est difficile d'un point de vue pratique et d'un point de vue de gérané, et si l'on construit en même temps un parking

2) Dans certains passages piétonniers ou automobiles, ou certaines gares souterraines. Ces gares souterraines sont des échangeurs de circulation typiques du Japon, ce ne sont pas seulement des ouvrages servant d'échange entre les chemins de fer et la route, mais aussi des espaces publics importants, qui peuvent être utilisés pour la construction d'un parking.

Il faut en outre accorder une attention particulière aux points suivants. Premièrement, il faut donner la priorité aux ouvrages publics. Deuxièmement, comme il est très difficile de démolir et de reconstruire un ouvrage souterrain une fois qu'il a été construit, il est nécessaire, lorsque l'on projette un ouvrage de cette sorte, d'effectuer une étude soignée de tous les aspects à long terme du développement de la zone urbaine. Troisièmement, il est nécessaire de définir avec précision sa place dans l'ensemble de l'organisation de la ville, y compris celle des zones périphériques, au niveau d'un plan détaillé donnant également une représentation des futures superstructures. Si l'utilisation du sous-sol est temporairement limitée, cette limitation doit être strictement observée. Enfin, puisque les espaces souterrains sont des lieux clos, il faut apporter une plus grande attention aux plans et aux précautions pour la prévention des catastrophes.

Au Japon, le problème le plus important dans la construction des ouvrages publics souterrains qui s'agit d'un métro ou d'un centre commercial est la façon dont il faut les concevoir pour qu'ils présentent une totale sécurité dans le cas de catastrophes telles que: tremblement de terre et incendie, tremblement de terre et inondation, etc. On sait d'une façon empirique que les ouvrages souterrains résistent bien aux tremblements de terre, si bien que l'on n'a pas encore mis au point de méthode de contrôle pour cette question. En fait, on connaît peu d'exemples de projets tenant vraiment compte des forces sismiques. Il faudrait donc mettre au point un projet d'ouvrage résistant aux tremblements de terre en étudiant particulièrement les points suivants: premièrement, la liaison entre deux ouvrages présentant des caractéristiques de réponse différentes, par exemple un tunnel et une station, peut être soumise à une contrainte importante. Deuxièmement, il faudrait utiliser des matériaux rigides pour la construction des tunnels, pour résister à la déformation de l'ouvrage. Troisièmement, on a tendance à construire les mètres à une profondeur de plus en plus grande, et il faudrait éviter de les faire traverser des zones hétérogènes. Quatrièmement, les systèmes d'éclairage, de drainage, de communication, etc., doivent être conçus de façon appropriée.

Un projet de Guide pour la conception anti-sismique des tunnels immergés vient d'être publié. En ce qui concerne les mètres, il est urgent de concevoir une méthode de conception anti-sismique, basée principalement sur la méthode des déplacements plutôt que sur la méthode conventionnelle du coefficient sismique; des sismomètres, des sismomètres de déplacement, des jauges de contrainte et d'autres instruments sont installés en différents points pour analyser les théories et recueillir des données. Les normes de prévention des catastrophes pour les stations sont stipulées par la Loi sur la Construction et la Loi pour la Prévention et l'Extinction des Incendies. Ces nouvelles normes comprennent principalement la construction des bâtiments en matériaux non-combustibles, l'installation d'une salle de contrôle pour la prévention des catastrophes, etc. Dans les stations et les sections passant sous des rivières, on prend des mesures pour l'évacuation en cas d'incendie. On peut donc dire que les ouvrages actuels du métro ne posent plus de problèmes en termes de la résistance aux séismes que des inondations. Par conséquent, les usagers doivent se plier aux instructions des surveillants dans le cas d'un accident.

En ce qui concerne les centres commerciaux, les calculs anti-séismes se font généralement selon la méthode du coefficient sismique. En dehors de la conception de l'ouvrage proprement dit, il est important d'étudier la capacité portante et les possibilités de déformation du terrain environnant. Actuellement, la méthode de contrôle des tremblements de terre est donc générale-

ment basée sur la méthode du coefficient sismique; on multiplie les surfaces au sol et en souterrain par différents coefficients sismiques horizontaux. Mais normalement, on ne tient pas compte de la pression latérale du sol et de la pression hydrostatique pendant un tremblement de terre. On prend généralement, pour la partie en souterrain, un coefficient sismique inférieur à celui de la partie en surface, ceci en raison du fait que, conformément à ce qui indiquent les résultats des observations et d'autres données, l'accélération sismique est plus faible en souterrains. Mais il n'existe aucun coefficient sismique expressément défini pour la conception des ouvrages souterrains, pour lesquels on applique différentes normes. En outre, la résistance aux séismes des ouvrages est assurée en premier lieu par l'augmentation de la rigidité d'ensemble, en second lieu par la réalisation de liaisons ne comportant pas de joints d'expansion.

Les déformations du terrain environnant ont une très grande influence sur les ouvrages. Il est donc souhaitable d'en tenir compte. En outre, si d'autres bâtiments sont reliés à l'ouvrage souterrain, ils exerceront inévitablement une influence sur lui pendant le tremblement de terre.

Pour l'extension en profondeur d'un ouvrage souterrain, on adopte souvent une construction souple. On considère que la méthode dite de l'île flottante convient particulièrement bien.

Des recommandations ont été publiées en 1974 pour éviter les catastrophes dans les centres commerciaux souterrains; elles conduisent pratiquement à interdire les nouvelles constructions en raison des risques, d'incendie en particulier. Les centres existants doivent être aménagés en revoyant le projet, en prévoyant des équipements de lutte contre l'incendie, des systèmes de secours, en limitant le nombre de restaurants. Les lois de construction concernent également les équipements à prévoir dans les passages publics et dans les boutiques. Pour le cas d'un tremblement de terre, il est également essentiel de renforcer les plafonds. Dans le cas d'une inondation, il faut prévoir des stations de pompage et des équipements de désinfection après inondation.

Dans l'avenir, il est souhaitable que l'utilisation du sous-sol soit planifiée; il faut également tenir compte de certains facteurs écologiques: conditions de température et d'humidité, pollution de l'air, bactéries de l'air, manque de soleil, rarefaction de l'oxygène.

Le développement d'une ville sur trois dimensions requiert la combinaison de trois éléments interdépendants: une population commerciale sur une grande échelle, un modèle d'utilisation des sols et un réseau complet de trafic possédant une grande accessibilité. Il est essentiel que l'on tende à la construction d'ouvrages souterrains répondant à ce modèle, puisque les ouvrages souterrains sont pratiquement définitifs.
LOW COST STORAGE OF PETROLEUM IN SALT DOMES, MINES AND ROCK CAVERTS

STORAGE DEMAND
At present and for the next-coming decades, hydrocarbon products will still be among the most important energy sources for all countries in the world. Every country is today dependent on oil and gas for their industrial development, transportation, heating and cooling of houses etc. Although we are trying to find new energy sources for the future, we shall be very much dependent on oil and gas for at least several decades until alternative sources of supply may be developed and proved to be efficient enough to serve as our basic energy source.

Prospecting for oil will continue as will prospecting and production of gas. The development of new oil and gas fields, probably offshore, will create extensive transportation needs complementary to those already existing. In the transportation chain, storage is a very important factor. Storage is not an aim in itself, but a way to obtain a higher degree of utilisation of pipelines and terminal space.

Demand for storage facilities is always there. Often, the production of different types of hydrocarbon products and gas products from oil and gas wells as well as from refineries will remain at a constant level, while the consumption varies throughout the year, week and over the years, thus demanding the suppliers to stockpile oil and gas to even out the supply capacity so as to optimise the function of the system.

In that respect, everyone is interested in storing oil and gas and, to store these products as cheaply as possible.

Apart from the major economical and environmental factors, protection and safety aspects, like containment safety, safety against sabotage, fire and explosion, as well as land saving aspects in our urban areas, are increasingly beginning to reign and will probably become of even greater importance in the future.

Underground storage can in these respects be considered safe. It also offers environmental advantages and a higher durability compared with surface storage systems. However, the key-question still is: What about the economy of underground storage? Let us start by looking at the various methods of storing underground.

DIFFERENT TYPES OF UNDERGROUND HYDROCARBON STORAGE
Basically, there are three ways of storing oil and gas: in salt domes, abandoned mines, or specifically mined out caverns. In addition to this, gas can be stored in aquifers.

SALT DOME STORAGE
Salt domes occur when deep-seated horizontal beds of salt under heat and pressure become quasi-plastic and extrude upwards to form cylindrical plugs. Salt dome storage wells are formed by drilling into the salt formations, cementing steel casings into the salt, positioning tubing into the well and then pumping in water to dissolve the salt to the required shape and size. Eight or nine barrels of water are needed to create one barrel of underground storage space, so the ideal location is one next to an ample supply of fresh water and, where there is economical means to dispose of the brine. Salt dome storage, however, has one major limitation: salt formations are not too common where the storage need is high. Also, the disposal of the brine may often create problems, which in certain cases causes environmental complications.

ABANDONED MINE
Another way to create underground storage is to convert existing, abandoned mines into storage facilities. It is logical, that if there are unused areas underground, they can be used for some alternative purpose. The mine must be redesigned and reconstructed in order to meet the requirements of the new application. The following basic factors should then be taken into consideration.

The primary question is, of course, the availability of abandoned mines. Are there any suitable mines in the area where the need has developed? Often a mine would be located in an area where earlier geological activities, perhaps during the mineral enrichment phase, may have weakened the bedrock. This in turn, means that the geology (and often the geometry of the mine, as the mine follows the shape of the ore body) might not always be favourable, which in an underground storage facility could create circulation problems. The hydrological conditions might be affected if, e.g., the groundwater level was lowered during the mining operations. There is also the question of ownership of the mine land, which can cause unexpected economical problems if not considered during the planning phase.

CAVERN STORAGE
The third way of storing hydrocarbon products underground is in rock caverns, specifically mined out to meet the required storage volumes. The basic idea is to excavate the cavern with as simple a layout as possible and, with as large a cross-section as possible. This can be done in two ways, either by a vertical shaft that is drilled down to the level of the storage facility or by a sloping tunnel (an access tunnel or a ramp tunnel) down to the level where the storage facility is to be excavated.

When using the vertical shaft solution, the hauling capacity is limited, which means that when the facility is large and the time schedule is tight, this method could be difficult to apply. Whereas the sloping access tunnel down to the storage cavern in question offers a higher transportation capacity and, thus, rational excavation equipment and methods may be used. This will decrease the time of construction and thereby the costs.

The hydrogeological conditions must be of such nature that the groundwater level is and can be kept higher than the roof of the cavern. The groundwater prevents the oil from migrating into the surrounding rock as groundwater has a higher density than oil and gas. The groundwater which leaks into the cavern seeps along the walls down to the pump pit at the bottom of the cavern where it is pumped out thus preventing the oil from disappearing from the cavern. This natural principle is the most economical ‘lining’.

There are some major advantages with cavern storage. The geometry and the layout of the cavern can be chosen in an optimal way, the land costs are low, if any at all, the design of the cavern can be made
for rapid filling and withdrawal of oil and gas, and the location can normally be found very close to the key point.

AQUIFERS STORAGE

Gas can also be stored underground in aquifers, which means storage of gas in porous formations overlain by a tight cap rock formation. Gas is introduced through a vertical hole into the porous formation and thus kept in place. This storage facility can be equalized with a natural gas field.

COST RELATIONS BETWEEN UNDERGROUND STORAGE APPLICATIONS

Costs for different underground storage applications vary considerably between different projects, different countries, and different areas. But, as a general conclusion, it can be said that salt dome storage development can be anticipated to cost between US$ 1.75 to 2.00 per barrel of volume. These cost figures, however, do not consider costs for the disposal of brine. As mentioned above, this could in certain areas be a difficult problem that could increase the costs.

The costs for abandoned mine storage vary but, it can in general be regarded as cheaper than cavern storage. Different case histories indicate that the cost of storage in abandoned mines may vary from US$ 0.5 per stored barrel up to US$ 2.00 per storage barrel. Sometimes, the costs for a pipeline construction must be added if the mine is located away from the plant or handling facility.

In May-sur-Orne, in France, there is a crude oil storage of 32 million barrels or 5 million m³ in an abandoned mined (reported by V. Maury in the Rockstone 77 Proceedings). The redesigning and reconstruction of this mine is in the range of US$ 1.00 per barrel (about US$ 8.00 m³).

Due to the fact that the mine is situated 85 km away from the keypoint, a pipeline had to be constructed. This increased the costs by US$ 0.8 per barrel resulting in a total cost of US$ 1.8 per barrel.

The ownership of the mine could cause problems too. One large mine considered for strategic storage of crude oil in the USA has been estimated to cost about US$ 0.5 per stored barrel (US$ 4.5 m³). The purchase of the mine is, however, not yet settled. A mine owner is most likely aware of the market price of his mine. In some countries these negotiations could be easy to handle and in others, it might be a difficult problem.

As cost data of cavern storage are available to a larger extent than data from salt dome storage and abandoned mine storage, a more thorough treatment of this concept will be made here.

COSTS FOR CAVERN STORAGE

Generally speaking costs for cavern storage vary, depending on the size of the storage facility and, on the rock conditions. In Sweden, storage caverns are constructed for about US$ 2.31 per barrel. The costs for construction in the US is reported to be 5.5-8.00 dollars per stored barrel for LPG storage facilities of rather small sizes.

The final cost of a complete cavern installation depends on:
1. Rock quality
2. Cavern volume
3. Number of caverns
4. The extent of the installation
5. Cavern level.

A tight sound rock mass with favorable rock mechanical and hydrogeological properties permits the blasting of caverns with large spans. The cost per volume unit blasted rock decreases with increase in permissible span and vice versa. The cost of required support measures and sealing activities is also lower in good rock compared to bad rock conditions.

Each cavern requires certain fixed arrangements such as concrete barriers, pipe shaft, pump pits, equipment, etc. As the volume of a cavern is increased, the marginal costs for the extra volume will be comparatively low. The same considerations apply to a certain extent for an installation comprising a number of caverns. Certain costs for an installation are fixed and will therefore diminish per cavern in the case of multicavern installations.

From a purely economical viewpoint it is hardly justifiable to build an oil storage installation underground housing less than 250,000–300,000 barrels (40,000–45,000 m³), in which each separate rock cavern should not hold less than 60,000 barrels (10,000 m³).

The requirements for gas storage are quite different due to the fact that the gas is normally stored by pressurized refrigeration. A rock cavern for gas storage with a capacity of only 60,000–70,000 barrels can be an economically cheaper alternative than a cistern of the concentrated type. Under certain conditions (high pressure storage) the rock cavern may be several times as economic as an above-ground tank.

When comparing subsurface construction cost data between different countries, it must be emphasized that the basic situation always differs somewhat. Different traditions, different regulations and different practical experiences account for the major part of this disparity. Consequently, the following cost data must be looked upon against this background.

During the first international symposium on underground storage in excavated caverns—Rockstone 77 in Stockholm, Sweden, Sept 1977, Mr Gösta Jansson presented a paper giving a summary of cost expenses relevant to Scandinavian conditions 1977. The scattered variations depends on the geological conditions. The same cost relation was reported by the Finnish national oil company Neste Oy during one of the technical field excursions following Rockstone 77.

In Chemical Engineering, January 16, 1978, G. E. Weissmantel wrote an article outlining underground storage technology and costs related to the US situation based on discussions with different sources, including the Federal Energy Administration (now Department of Energy). He reports the following cost estimates for mined storage and surface tanks in a cost per barrel of volume used (provided the sizes of the plants are large).

Mined caverns: $6–9/ barrel, ($40–60) m³.
Above ground tanks: $6–12/ barrel, ($40–80) m³.

These figures apply for oil and gas storage and include construction as well as installation works in the cavern storage facilities. After discussions in 1978 with different oil, gas and pipeline companies operating in the US, the following cost estimates were recognized by them.

Aboveground tanks for crude oil: $4–6/ barrel ($27–40) m³. (Some costs have to be added to these figures as not all relevant costs were included in these figures.)

Aboveground tanks for LPG from $21/ barrel ($140) m³ and upwards depending on size and pressure.

Underground storage caverns for LPG of sufficient size: $5–8/ barrel ($33.5–53.5) m³.

If we take into account that 20–30% of the cavern constructions costs covers the installation works and 70–80% of the construction works it might be interesting to compare the pure mining costs from the Kansas City limestone mining operations. The rock conditions there can be regarded as very favourable if these formations should be considered, for oil and gas storage. But in this area mining operations are carried out in a highly rational manner and this is interesting as case records in this connection.

The construction cost they experience here is $3.5 per cubic yard excavated rock volume. It corresponds to $0.7/ barrel ($4.7/m³). If this should account for 70% of the total cost of an oil cavern storage
conventional surface tank-farm implies a radical reduction of land requirements, this also affects the design and location of the remaining above-ground facilities. If considered at an early stage when the client is evaluating several alternative sites for his refinery, tanker terminal or depot, an underground system might considerably reduce the area of land ultimately to be acquired.

Rock caverns may extend existing storage facilities without requiring more land. In Sweden, several cavern projects have been executed directly below operating surface tank-farms, industrial premises roads and dwellings. The storage cavern may even extend beyond the shoreline and be constructed partly under the sea floor.

Underground Storage
- Safety
- Economy
- Environmental Advantages
- Durability

project the total cost would be $1/ barrel ($6.7 m³) of volume, which actually is what mining can be done for if rational conditions prevail and large scale operations is a fact.

The US cost figures on LPG cavern storage that has been furnished above comes from room and pillar operations with a shaft as main connection between the surface and the cavern level. This solution can, as mentioned earlier, be regarded as more expensive than a sloping access tunnel system due to reduced hauling capacity. This must be kept in mind when comparing the different cost figures for surface and underground construction.

LAND REQUIREMENTS
As an underground alternative to a

OPERATING COSTS
Annual operating costs are influenced by a number of factors in addition to the advantages entailed by lower investments, reduced land rent and reduced amortization at construction costs.

Insurance costs are only 40-50%T, compared to aboveground storage, due to much lower hazards and pollution risks.

Maintenance costs are virtually limited to those necessary to keep the equipment in good working order, as the caverns do not need maintenance. When storing petroleum products maintenance costs may be as low as a third of those to be expected from steel cisterns above-ground.

Heating costs for crude oil, heavy and fuel oil will be much lower due to the low thermal conductivity of most rocks and there are reductions in losses due to "breathing" and evaporation.

Cost on pumping may be marginally greater than for surface installation because a small head must be overcome.

During Rockstore 77 Stig Moberg, Swedish State Power Board reported the following operational costs based on 30 years of experience with heavy fuel oil.

Maintenance: $0.035 per annual stored barrel.

Operational costs including heating and pumping: $0.11 per annual stored barrel.

Administration including insurance: $0.015 per annual stored barrel.

This makes totally US $0.15 per annual stored barrel, out of which $0.05 can be considered cost for heating the fuel oil to keep it pumpable.

SUMMARY
The conclusion that can be drawn from the above is that apart from the economical aspects, underground storage offers many advantages, e.g environmental, safety, it is not visible from land or air, nor is the facility affected by external action. Also, if land costs are included, a rational planning in the use of the underground could be made beneficial.

Therefore, underground storage of oil and gas is an increasingly attractive solution. It should be demanded that planners and decision makers as a general routine thoroughly consider the underground alternative compared to traditional surface storage and, when it proves economically advantageous, they should go underground.
STOCKAGE ÉCONOMIQUE DU PETROLÉ DANS LES DOMES SALINS, LES MINES ET LES CAVERNES

Besoins
Actuellement et pendant longtemps encore, les hydrocarbures constituent l'une des sources d'énergie les plus importantes. C'est pourquoi la prospection de nouveaux champs de pétrole va se poursuivre, entraînant une extension des besoins de transport. Or, le stockage est un maillon important de la chaîne du transport.

Chacun est intéressé par le stockage du pétrole et du gaz, et par un stockage au moindre coût.

Les facteurs d'intérêt ne sont pas seulement économiques, ils concernent aussi la protection et la sécurité, ainsi que la préservation de l'environnement. A ces égards, le stockage souterrain peut être considéré comme sûr. Il présente aussi des avantages écologiques et une durabilité plus grande que les installations en surface. Mais la question-clé reste: quelle est l'économie que permet de réaliser un stockage souterrain?

Différents types de stockage
Stockage dans les dômes salins
Un dôme salin se produit lorsqu'un lit de sel devient quasi-plastique sous l'effet de la chaleur et de la pression et qu'il forme dans le sol une poche cylindrique. Des puits sont alors ménagés en enfouissant dans ce dôme salin des caissons d'acier, dans lesquels on met en place des tubes servant à introduire de l'eau qui dissout le sel. On obtient ainsi une cavité de la forme et de la taille souhaitées. Mais les dômes salins sont peu nombreux là où l'on a besoin de stocker, et l'évacuation de la saumure crée souvent des problèmes.

Minas abandonnées
Il s'agit de transformer des mines abandonnées en équipements de stockage. Il faut prendre en compte les facteurs suivants: la mine abandonnée est-elle disponible? Existe-t-il des mines de cette sorte dans la région où l'on a besoin de stocker? Quelles sont les conditions géologiques, y-a-t-il eu rabattement de la nappe pour l'exploitation minière? Enfin, à qui appartient la mine?

Stockage en chambre souterraine
Il s'agit de creuser une chambre aussi grande que possible, en partant soit d'un puits, soit d'un tunnel.

Les conditions hydrogéologiques doivent être telles que la nappe phréatique puisse rester au-dessus de la caverne, de façon à empêcher la fuite du pétrole ou du gaz, assurant ainsi le "revêtement" le plus économique qui soit. Cette solution présente des avantages certains puisque l'on peut en choisir les dimensions et l'emplacement; les coûts éventuels de terrain restent peu élevés et la caverne peut être conçue de façon à faciliter le remplissage et le tirage.

Stockage aquifère
Cette solution ne concerne que le gaz, qui est stocké dans une formation poreuse au-dessous d'une formation rocheuse étanche. Ceci revient à recréer un champ de gaz naturel.

Coûts
Les coûts varient selon les projets, les pays, les régions. D'une façon générale le baril stocké coûte, en dôme salin de 1,75 à 2 $, en mine abandonnée de 0,5 à 2 $, en caverne de 2 à 8 $.

D'un point de vue purement économique, il est difficile de justifier la construction d'une caverne pouvant abriter moins de 250 000 à 300 000 barils de pétrole.

Pour le gaz, une caverne est plus économique qu'une citerne en surface à partir de 60 000 à 70 000 barils seulement. En cas de stockage haute pression, elle peut être beaucoup plus économique qu'une citerne.

Surfaces nécessaires
Les surfaces nécessaires sont moins importantes qu'à l'air libre et les extensions éventuelles sont plus aisées.

Coûts d'exploitation
On doit tenir compte du fait que les frais d'assurance sont moindres, ainsi que les coûts de chauffage pour le pétrole; par contre, les coûts de pompage sont plus élevés. A ROCKSTORE 77, on a pu donner un coût d'exploitation de 0.15 $ par baril stocké par an, dont 0.05 $ pour le chauffage.
ENERGY CONSERVATION BY INCREASED USE OF UNDERGROUND SPACE

Open Session

C. Fairhurst (Delivered by) M. Bergman

Underground space should be recognized as one of man's largest unused resources. As an example, excavation of one third of the space beneath any city to a depth of 30 m would create new space equal to the entire building space above ground, i.e., the size of the city could be doubled without increasing the plan area. This is possible in most major cities.

Use of underground space has a number of major advantages, including preservation of surface and near-surface space (i.e., 0-10 m deep), for those activities in which surface exposure is essential or very desirable, e.g., farming, recreation, homes, air travel, etc. also, isolation from surface effects such as tornadoes, storms, and bombing. Earthquake damage is much reduced, ground vibrations from traffic and general noise are rapidly attenuated with depth, as are seasonal temperature variations.

Incorporation of the underground dimension allows optimal three-dimension al planning and development of communities. It is entirely possible, for example, to have multiple zoning in three dimensions: the surface and immediate sub-surface (0-10 m) could be zoned for housing, recreational, farming, etc.; the sub-surface (10 m-50 m) for commercial and industrial use and transportation. Activities such as sewage handling can also be located underground advantageously.

With such a plan it is possible to have clean communities in which industrial pollution is controlled from entering the atmosphere, and communities can live in an attractive environment and, in some cases, reach work without cars.

Energy conservation is an important attribute of the above possibilities. For example, earth-sheltered or underground design of residential and commercial space can result in substantial energy conservation and cost advantages.

Heating and cooling of buildings accounts for 30% of the total energy used in the U.S., and transportation accounts for 25% more, indicating the great potential for energy conservation where three-dimensional planning incorporating underground space is carried out.

Apart from the need for energy conservation to preserve dwindling natural resources, the cost of fuel can be anticipated to rise rapidly in the future, so that it will become increasingly difficult to afford homes, especially for persons living on a fixed income. Also, interruption of fuel supplies in cold winters can pose a threat to life in places such as Minnesota and other northern states in the U.S. Uncertainty of fuel supplies may also result in a hesitancy on the part of businesses to invest in Minnesota, and to leave the state because of an uncertain future. Studies show that more of the energy used for heating and cooling of buildings can be conserved by earth-sheltered designs.

The feature of the ground that is the basis for the energy conservation possibilities is the fact that the temperature approximately 6 m below ground level stays constant at 55°F (13°C) the year round, and seasonal temperature variations are very quickly damped out at even shallower depths.

The heat loss (Q) from a building is given (approximately) by the expression

\[Q = U (t_i - t) \]

where \(U \) is the thermal transmission coefficient, \(t_i \) is the temperature inside the building, and \(t \) is the temperature outside the building.

Placing the building with an all-around earth-shelter is thus essentially the same as placing it in an environment where the temperature never changes from 55°F.

By careful planning for passive solar energy, plus a limited amount of active solar energy, we believe that it should be possible to develop buildings to be "energy independent", i.e., requiring no fuel for heating, cooling or even lighting. Industrially, the same advantages apply. Space Center, Inc. has underground facilities in Kansas City as well as surface storage facilities in Minnesota. Based on figures supplied by them for comparable storage in Minnesota, a comparison was made of installation and operating costs for dry and refrigerated storage. The difference in installation costs is significant and the difference in operating costs is remarkable.

Development of underground space in Kansas City continues to expand, and more and more earth-sheltered, energy-efficient buildings are being constructed throughout the United States. There are several companies in Kansas City with both underground facilities as well as surface facilities for dry storage, cold storage and office space. One of these companies for example, has 4,500 m² of dry storage underground, 4,600 m² of cold storage underground, and 1,500 m² of office space underground in addition to surface storage facilities. The Great Midwest Corporation, which has extensive underground facilities of various kinds in Kansas City, has compared these facilities which show that the operating cost for dry storage is U.S. $10/sq ft ($110/sq m) underground compared to U.S. $53/ sq ft ($390/sq m) for the surface location. For cold storage, the comparative operating costs are U.S. $0.50/ sq ft ($5.50/ sq m) underground and U.S. $1.10/sq ft ($12/sq m) on the surface. Finally, for office space the costs are U.S. $0.50/ sq ft ($5.50/ sq m) underground and U.S. $1.0 sq ft ($110/ sq m) on the surface.

By comparison, figures quoted at the ROCKSTORE 77 meeting related to Norwegian experience for cold storage, indicate that underground installation costs were 70% of the surface installation costs and the operating costs for underground dry storage facilities were calculated to be approximately 56% of the equivalent surface installation.

Even if one questions the specific figures in the above comparisons the trend is obvious. Underground location offers outstanding possibilities for energy conservation and cost savings in the future.

The Underground Space Center at the University of Minnesota is at present overseeing a $500,000 demonstration program to test, build, and monitor 12 earth-sheltered buildings. This program, financed by the State of Minnesota, is intended to prove quantitatively both how and how much energy can really be saved by the earth-sheltering technique in residential earth-sheltered buildings. The Department of Civil and Mineral Engineering at the University of Minnesota has just received funds to start the engineering design of a 130,000 sq. ft. (13,500 sq. m.) earth-sheltered building for the new departmental premises.

To conclude, it is evident that earth-shelter and underground designs for energy conservation seems to have many advantages and very few disadvantages. We anticipate considerable increase in the use of these designs as the principles become more widely known.
ECONOMISER L'ÉNERGIE
EN UTILISANT
L'ESPACE SOUTERRAIN

Les ressources qu'offre le sous-sol sont considérables puisqu'il suffirait de creuser sous une ville à une profondeur de 30 m pour en doubler la taille, sans augmenter ses dimensions en surface. L'utilisation du sous-sol offre un certain nombre d'avantages majeurs, dont la préservation de l'espace en surface et proche de la surface (de 0 à 10 m) pour les activités qu'il est essentiel ou très souhaitable d'exercer en plein air, l'isolation contre les phénomènes de surface (tempêtes, bombes), la protection contre les tremblements de terre, les vibrations du trafic et les bruits, et les variations saisonsnières de température.

Il est tout à fait possible “d’échelonner” les activités, par exemple de 0 à 10 m les habitations, les loisirs, l'agriculture; de 10 à 50 m le commerce et l'industrie, les transports; plus bas encore, les égouts.

La préservation de l'énergie est un avantage important des précédentes possibilités: des espaces commerciaux et résidentiels souterrains permettent de faire d'importantes économies d'énergie.

Le chauffage et le conditionnement d'air des immeubles comptent pour 30% de l'énergie dépensée aux États-Unis, et les transports pour 25%. Or, des études montrent que 70% de l'énergie utilisée pour le chauffage et l'air conditionné pourraient être économisés dans le cas d'ouvrages enterrés. En effet, la température du sol se maintient à 55°F (13°C) dès que l'on atteint une profondeur de 6 m, et les variations saisonnières se font très peu sentir. En étudiant soigneusement un projet d'énergie solaire passive, appuyée par une énergie solaire active, et un système Bigh de conditionnement, nous pensons qu'il serait possible de mettre au point des bâtiments "énergétiquement indépendants", c'est-à-dire ne demandant pas de fuel pour le chauffage, le conditionnement d'air, ni même pour l'éclairage.

Les mêmes avantages peuvent s'appliquer à l'industrie. Le Space Center Inc. a pu comparer les coûts d'installation et de fonctionnement de ses équipements en surface et en souterrain. La différence est significative. D'autres sociétés ont fait les mêmes constatations. Le coût du stockage en souterrain peut ne pas dépasser la moitié du coût de stockage en surface.

L'Université du Minnesota étudie actuellement un programme de démonstration de $ 500,000 pour l'expérimentation et la construction de 12 bâtiments souterrains. Ce programme, financé par l'État du Minnesota, démontera quelle quantité d'énergie peut réellement être économisée par ce procédé.
ENERGY SAVING IN SUBSURFACE FOOD STORES

For a long time man has used the subsurface to store his supplies of food in natural cavities and deep cellars. Here, he could store food, potatoes and vegetables for many months after harvesting. The winter’s wine here could obtain its fine bouquet and the method of food storage and handling is one of the secrets behind famous French cuisine.

Modern rock-blasting techniques have made sub-surface rooms competitive to conventional structures for storage purposes. In the last 25 years, seven deep freeze storage stores have been built in Norway. Experience of operation indicates that the running economy for rock stores are far better than for comparable conventional stores, considering power requirements, energy consumption and maintenance costs.

As a natural consequence, running costs for cold stores with temperatures close to rock temperature should be still better. A study has been carried out by Norwegian consulting engineers, to compare cold stores in rock with conventional stores.

Based on this I would like to discuss two types of food storage. For cold storage I shall say a little about freezing point, and for deep freeze a little about temperatures from -25°C to -35°C.

In the ideal food store, the temperature should be even. The relative humidity should be high, and the temperature of the surrounding surface as close to air temperature as possible. This is to prevent evaporation and sublimation from the stored food, causing weight loss and quality reduction.

Fresh fruit, potatoes and some vegetables will be destroyed by freezing and have to be stored at a temperature above the freezing point. In cold storage the growth of microorganisms and biological activity is very much lowered without really stopping. Storage time will therefore be limited. Sudden leaps in the temperature may trigger biological processes, e.g. sprouting of potatoes.

In deep freeze storage, the growth of microorganisms is stopped. Oxidation processes and enzyme activities are very much slowed down. At a temperature of 35–40°C storage time is almost unlimited. In a deep freeze store, an even temperature is very important. Fluctuation in temperature above -180°C causes ice crystals to form in the product, causing serious reduction in food quality.

When the first deep freeze store in rock, with no additional insulation, was planned, the cooling capacity was decided more as a rough estimate than by an accurate calculation of three dimensional non-stationery heat flow. A manual calculation of the problem was very complicated and laborious. Today, however, lots of information from stores in operation are obtainable. At the Norwegian Institute of Technology, a computer programme has been developed, which by means of given parameters can give an accurate calculation concerning the choice of regenerating installation and a relation of the time necessary for cooling down the store.

The parameters required are: initial rock temperature, thermal conductivity in rock, convective heat transfer to rock; product characteristics, an expression for the size of the product and product geometry.

Comparison between a rock food store and a conventional store shows that for a rock food store with storage the whole year round for 1,000m² and a storage volume of 8,000 cubic metres, the power used 100 watts corresponds to six watts per square metre.

The power is switched off outside working hours. Only infiltration of outside air through doors has been supposed. The supposition may also be correct for a new conventional store but there most likely will be some infiltration through the building structure. Because of the sheltered atmosphere of the rock store, the infiltration will be far less than for a conventional store. The infiltration through doors takes place during working hours only. The working hours are normally eight hours a day, five days a week. Cooling capacity insulation of a deep freeze store show that the actual store has a storage temperature of 35°C.

The rock store actually consists of a storage hall and an admission tunnel. Outside the rock, a small conventional building is erected, housing the cooling compressors and condensers. The overall store comprises an economical and practical storage width. No inside building is erected, and no additional insulation is added. The heat flow after two and a half years of operation equals 10 watts per square metre.

The conventional store consists of a storage hole, an entrance hole acting as a sluice, and a machine room housing compressors and condensers. The building is erected in cast concrete and then thermally insulated. Special attention must be paid to the vapour barrier to prevent destruction of the insulation. However, in the course of time, a reduction of the insulation value is inevitable. To avoid permafrost problems, floor heating underneath the floor insulating layer, has to be provided.

To summarise the energy advantages in a rock deep freeze store, the maximum energy requirement is 50% of that for a conventional store. The annual consump-

Fig. 1 Underground storage. (Text on the figure)
tion for a rock store is 75% of the conventional store. For a rock cold store, the maximum energy requirement is 26% of a conventional store, and the annual energy consumption is 80%. The rock store shows great savings in energy requirements, and energy consumption, compared with the conventional store. In addition it can handle high peak loads. The plant may even be switched off or utilised for other purposes, several hours each day.

The rock store can handle great peak loads, for example, during harvesting periods. Last winter, snow and storm destroyed electric power distribution systems in the northern part of Norway. Seven districts were without electric power for weeks, and large amounts of frozen fish were destroyed. With deep freeze stores in rock, the catastrophe might have been avoided. Yes, these are strong arguments in favour of constructing deep freeze stores and cold stores in rock.

ECONOMISER L'ENERGIE PAR LE STOCKAGE EN SOUTERRAINS DES ALIMENTS

Depuis longtemps, on utilise le sous-sol pour stocker denrées et matières premières. Les techniques modernes de creusement à l'explosif font que les cavités souterraines sont maintenant concurrenct aux ouvrages traditionnels de stockage en surface.

Une étude a été effectuée par des ingénieurs-conseils norvégiens pour comparer deux types de stockage réfrigéré en souterrain (en profondeur et en cavernes) avec le stockage dans des magasins conventionnels.

Le magasin réfrigéré idéal présente une température constante, l'humidité relative est élevée, et la température de la surface environnante aussi proche de la température de l'air que possible, ceci pour prévenir toute évaporation et sublimation des produits stockés. En stockage réfrigéré, la croissance des micro-organismes est ralentie et le temps de stockage est limité en stockage profond. On stoppe la croissance des micro-organismes, le processus d'oxydation et l'activité des enzymes est également très ralentie. A une température de -35°C à -40°C, le temps de stockage est pratiquement illimité. Dans le

Fig. 2 Salt dome storage wells are formed by drilling into the salt formations, cementing steel casings into the salt, positioning tubing into the well and then pumping in water to dissolve the salt to the required size and shape.

Fig. 3 The Swedish storage method. The principle of storing oil in unlined caverns is based upon the fact that cracks and other voids are filled with water when located below groundwater level.

Water therefore tends to move downwards and into the cavern thus preventing oil from escaping.

Fig. 4 Cavern for storage of heavy fuel oil at Håndø, Norrköping. The pump pit with oil and water pump installation in this 600m² cross section cavern is shown.

Fig. 5 Underground storage in Sweden. Price level Sept.-77 after G. Jansson, ROCKSTORE 77.

Fig. 6 Schematic cost comparison between different underground storage projects.

A. The shapten area is an extrapolation of Fig. 5 above.

B. Cost level anticipated for salt dome storage projects in USA.
C. Cost for May-sur-Orne crude oil storage in a converted mine after V. Maury, ROCKSTORE 77.
D. Calculated cost level for a storage project in a converted mine in USA. The arrows indicate land purchase costs.

Fig. 7 A schematic comparison of cost levels for different large scale underground construction and storage operations and surface installations.

Fig. 8 (Text on the figure).
stockage profond une température constante est nécessaire si l'on veut conserver la qualité des produits.

On a mis au point à l'Institut Norvégien de Technologie un programme sur ordinateur qui, à l'aide des paramètres donnés, permet le calcul précis du choix de l'installation de réfrigération et du temps nécessaire pour refroidir le magasin. Les paramètres requis sont: la température initiale de la roche, la conductivité thermique de la roche, le transfert thermique par convection, les caractéristiques du produit à conserver, la taille de ce produit et sa géométrie.

Les infiltrations dans le stockage en souterrain sont bien inférieures à celles qui se produisent dans un magasin traditionnel. En fait, un magasin souterrain ne se compose que d'un hall de stockage et d'un tunnel d'admission. Un petit bâtiment traditionnel est construit à la surface pour abriter les compresseurs de refroidissement et les condensateurs. On ne construit pas de bâtiment à l'intérieur, et l'on n'ajoute aucune isolation. Par contre, le magasin traditionnel se compose d'un hall de stockage, d'un hall d'entrée en forme de sas, et d'une salle des machines abritant compresseurs et condensateurs. Le bâtiment est en béton et doit être isolé. Mais cette isolation perd une partie de son efficacité avec le temps.

Le stockage en profondeur permet d'économiser 50% en alimentation électrique et 25% de consommation par rapport à un magasin conventionnel. Le stockage en caverne permet d'économiser respectivement 74% et 20%. Le stockage en souterrain permet également de traiter plus facilement les pointes de production, par exemple au moment des récoltes. D'autre part, le stockage est plus fiable: ainsi, l'hiver dernier, une panne d'électricité consécutive à une tempête a touché sept magasins dans le nord de la Norvège pendant plusieurs semaines; un stock important de poissons congelés a été perdu. Cette catastrophe aurait pu être évitée dans le cas d'un stockage profond dans la roche.
SHOULD WE AVOID TRANSPORTATION UNDERGROUND?

Transportation infrastructures are not excluded from this regulation, and impact studies should be established in the first stage of feasibility studies. When all conditions have been met, a declaration of public use is pronounced.

Urban transportation is, of course, the most difficult to decide on, and it is to be noted that most of the large cities have a large transportation network built underground.

First, what are the reasons for avoiding underground transportation?

Measures can be taken to reduce the inconveniences when installing underground transportation. The installation of underground transportation poses on the human plane a certain number of problems.

One of these is the effect on personnel who have to work underground several hours every day, and provision of air conditioning, which can cause certain physical troubles, and the uniformity of the air itself.

In contrast to physical factors, psychological aspects are of more concern to users of transportation than to personnel working underground. They are just as important as physiological factors for, if the physical factors condition the comfort of individuals, the psychological factors condition interest in working and living underground.

In conclusion, these inconveniences should not constitute an obstacle to the installation of underground systems. For those working underground solutions could be applied to improving their living conditions.

In new cities, inconveniences and difficulties encountered during installation of underground transportation are different in nature than for old cities.

Why should we avoid underground transportation? The problems of urban transportation concerns all big cities. It results from accelerated growth. It is necessary to distinguish between three types of cities: one, cities having already a transportation network, an underground transportation network, and in most cases they merely wish to extend this network. These cities are, of course, the large metropolises with populations of several million inhabitants.

The second type are cities that have only surface networks, such as buses, trolleys and tramways, but which are insufficient. These cities are either large metropolises, especially in developing countries, or average cities with about a million inhabitants.

The third group are new cities which have both interior transportation and commuter problems because of their proximity to the large metropolis. Solutions to these problems are not the same for these three categories.

For the installation of a transportation system, a study should always begin by determining the demand and flow of travellers to evaluate the capacity of the transportation system. Up to a certain level of traffic which could be about 10,000-15,000 travellers an hour, and the direction of traffic, a system of transportation at ground level is generally satisfactory. In most cases though, it is impossible without undertaking new work to reach a starting point and in particular, build stations, because of space limitations. That is why underground transportation is very often the best where the topography is unfavourable.

What are the measures to be taken to reduce the inconvenience of installation and what are the advantages?

Action to reduce inconvenience concerns improvement of living conditions underground, not only for users but also for personnel working there. Also, organisation methods enabling the reduction of important technical economic problems. With regard to underground transportation, and in the framework of the policy of transportation promotion, many studies have been made. It is thus time that access from the surface to the sub-surface should not have an aspect of a descent into hell, but should be organised to follow a natural progress in the framework of local urbanisation. That is, there should be pedestrian underground lanes, parking lots, etc. and in particular, perhaps more natural lighting and decorated halls, and openings with a large view of functional installations. Seeing is a privileged sense in the human being. The efforts to be made to facilitate time spent underground, should evolve visual installations—shape, colour relations, scale between volumes, etc. Straight runs into lengthy corridors should be avoided, and walking through them should be a pleasure. It would be interesting to bring the surface to mind through appropriate decoration in style or design, indicating reference points to buildings well-known within the city.

Multiplying the number of area maps with information on all connecting lines that users can avail themselves of. Finally, it should not be forgotten to further humanise underground life by poster campaigns to exhibitions or cultural events.

In Paris initiatives have been undertaken. In particular, there is a so-called metro-melody which consists in authorising small musical groups to perform at certain important points underground. With relation to personnel working underground, action towards improving underground conditions are similar. Improving air conditioning and sufficient humidity should be brought into the underground. Lighting is extremely important also, and perhaps colour should be introduced. Everything should be of better quality than at ground level, because of the increased annoyance of the lack of perspective. There is also the hearing aspect—the isolation due to attenuation of noise could have a very depressing action on certain persons.

What measure should be taken to reduce technical economic problems? The instal-
DEVROINS NOUS EVITER LES TRANSPORTS EN SOUTERRAIN

La formulation de la question posée en guise de titre du présent exposé, qui ne traite que les problèmes relatifs aux transports de personnes, laisse croire que l'on a toujours la possibilité de ne pas planter les transports en souterrain. En fait, les problèmes liés à l'établissement des infrastructures de transport ne se posent pas de la même manière dans les agglomérations ou leur périphérie et dans les zones non urbanisées.

C'est pourquoi dans la recherche d'une réponse à la question: "Devrions-nous éviter les transports en souterrain?", il paraît indispensable de distinguer les trois cas suivants:

- les transports en zones non urbanisées;
- les transports en zones suburbaines;
- les transports en site urbain.

1—Les transports en zones non urbanisées

Dans les zones non urbanisées, il convient bien entendu de chercher à éviter l'implantation de transports en souterrain, ceci en raison du coût très élevé de ce type d'infrastructure par rapport à l'établissement d'une plateforme au niveau du sol (éventuellement en légère remblai ou déblai).

Mais il est évident que la topographie d'une région montagneuse conduit très souvent à la nécessité de recourir à la construction d'importants ouvrages d'art (ponts, viaducs) ou de tunnels, dans le but d'éviter des configurations ou allongements de tracés par trop prohibitifs.

Il faut noter à ce sujet que la construction de ces tunnels présente certaines particularités par rapport à la réalisation de tels ouvrages en site urbain ou suburbain.

Il s'agit en particulier:
- des conditions géologiques, les terrains traversés étant le plus souvent rocheux, ce qui présélectionne les méthodes de creusement à mettre en œuvre (emploi d'explosifs, machines à forer);
- des conditions d'exécution, il n'y a, dans ce cas, que peu ou pas de précautions à prendre, pendant les travaux, vis-à-vis de l'environnement ou pour la protection d'ouvrages existants, les chantiers de construction de tunnels se caractérisent par ailleurs par de plus grandes distances entre les divers points d'attaque. Ces deux facteurs conduisent tout naturellement à la mise en œuvre de méthodes de creusement ayant un haut rendement, ce qui est un facteur de réduction des coûts.

Partout, dans les zones non urbanisées ou très faiblement urbanisées, ou l'implantation du transport peut être faite en surface, se posent néanmoins certains problèmes parmi lesquels il faut noter principalement:
- les acquisitions foncières et l'effet de coupure liés à l'implantation du site propre au sol;
- la protection des sites et de l'environnement (insertion dans les paysages);
- les nuisances, encore que le problème du bruit ne se pose pas avec autant d'acuité que dans les zones urbaines ou suburbaines.

2—LES TRANSPORTS EN ZONES SUBURBAINES

Pendant très longtemps, il a été possible d'éviter l'implantation de transports en souterrain dans les zones suburbaines. Il est vrai que les seuls facteurs pris alors en considération se réduisaient souvent à des arguments technico-économiques.

En effet, de plus en plus, la pression, et parfois même la révolte, des futurs riverains constitue un élément important qui ne peut être étudié dans le processus de choix du type d'infrastructure. Ces réactions se situent bien sûr dans le contexte général de sensibilisation de l'opinion et des pouvoirs publics aux problèmes d'environnement et notamment aux nuisances, sensibilisation qui a d'ailleurs été concrétisée en France en juillet 1976 par une loi à caractère très général relative à la protection de la nature.

Cette loi stipule notamment que la réalisation d'aménagements ou d'ouvrages doit donner lieu à l'élaboration d'une étude d'impact analysant les effets de l'insertion des ouvrages dans l'environnement, les raisons du choix du projet présenté et les mesures qui doivent l'accompagner pour supprimer, réduire et, si possible, compenser les conséquences dommageables du projet sur l'environnement, ainsi que l'estimation des dépenses correspondantes.

Les infrastructures de transport n'échappent bien sûr pas à cette règle et les études d'impact doivent être établies, dès le stade des premières études de faisabilité et de définition, dans le cadre d'un dossier soumis à l'enquête publique au terme de laquelle est prononcée la "déclaration d'utilité publique" du projet présenté, ainsi donc, dans le choix entre les différents types d'infrastructure de transport en zone suburbaine, à savoir:

- plateforme,
- viaduc,
- souterrain,

les facteurs relatifs à l'environnement et surtout aux nuisances ont une importance de plus en plus grande, tout en allant parfois à l'encontre des critères technico-économiques qui sont très comparables à ceux concernant les zones urbaines proprement dites et seront analysés plus loin. L'ensemble, il convient de noter que les zones suburbaines permettent généralement la réalisation d'infrastructures moins coûteuses en raison de la moins grande densité de l'urbanisation favorisant les acquisitions foncières, de l'existence de percées routières propices à l'implantation des infrastructures de transports et du moins grand encombrement du sous-sol. Tous ces éléments sont favorables au plan du coût des ouvrages et en particulier des tunnels qui peuvent être réalisés la plupart du temps à faible profondeur, par la méthode de la tranche couverte, dans des conditions beaucoup plus assurées que dans les zones urbaines proprement dites.

Au plan de la lutte contre les nuisances et plus particulièrement le bruit engendré par la circulation des trains sur un site propre à l'air libre (plateforme ou viaduc), de nombreuses recherches et actions ont été menées pour:

- d'une part, réduire l'intensité du bruit à l'émission gracie;
- à une isonsonisation plus poussée du matériel roulant;
— à l’adoption d’une pose de voie sur ballast avec traverses en béton bi-bloc et des longs rails soudés.
— d’autre part, réduire la transmission du bruit au moyen d’écrans placé le long des voies et entre les voies, dispositifs permettant un gain de l’ordre de 5 à 6 db (A). À la limite, c’est parfois une couverture complète des voies qui assure la protection contre le bruit.

3—LES TRANSPORTS EN SITE URBAIN
Les transports en site urbain constituent bien sûr le plus difficile à traiter quant au choix du type d’infrastructure et, à ce sujet, force est de constater que la plupart des grandes agglomérations disposent d’un réseau de transport en commun en site propre souterrain. Certes, certains réseaux comportent des parties aériennes (généralement en viaduc) dans des proportions variables mais qui restent le plus souvent faibles.

Ainsi, si la recherche d’une certaine philosophie de l’utilisation du sous-sol urbain conduit à distinguer :
— ce qui doit être mis en souterrain ;
— ce qui peut être mis en souterrain ;
— ce qui ne doit pas être mis en souterrain, l’expérience montre donc que les transports urbains se classent dans le deuxième groupe. Les questions qui se posent sont donc les suivantes :
1) pour quelles raisons, si cela était possible, devrions-nous éviter les transports en souterrain ?
2) pour quelles raisons, dans la pratique, ne pouvons-nous éviter les transports en souterrain,
3) dispositions à prendre pour réduire les inconvénients de l’implantation de transports en souterrain et avantages d’une telle implantation.

Ces trois points vont donc être successivement abordés.

3.1—Pour quelles raisons, si cela était possible, devrions-nous éviter les transports en souterrain ?
Dans l’analyse des inconvénients de l’implantation des transports en souterrain, on distinguerait :
— d’une part, les aspects humains liés à une telle implantation,
— d’autre part, les aspects technico-économiques.

3.1.1—Aspects humains de l’implantation de transports en souterrain
L’implantation de transports en souterrain pose, au plan humain, un certain nombre de problèmes dont certains s’appliquent d’ailleurs, d’une façon générale, aux autres activités humaines exercées en sous-sol ou même dans des locaux confinés et aveugles établis en élévation.
En outre, dans le cas des transports en souterrain, les différents facteurs humains relatifs aux conditions de vie en sous-sol sont plus ou moins sensibles selon qu’il s’agisse :
— des usagers des transports, dont le temps de séjour dans les ouvrages souterrains n’est jamais très long ;
— du personnel travaillant dans les ouvrages souterrains.

3.1.1.1—Facteurs physiques
Les facteurs physiques ne concernent pratiquement que le personnel travaillant dans les ouvrages souterrains et appelé à ce titre à rester plusieurs heures par jour dans un milieu confiné. Dans de tels locaux, ce sont les conditions liées au confort qui semblent prépondérantes pour la vie des individus, les principaux problèmes concernant :
— la climatisation, certains malaises peuvent être en effet ressentis du fait :
— de son uniformité qui ne tient pas compte des rythmes de chaud et de froid dont l’homme a besoin ;
— du degré d’humidification de l’air ; on respire un air souvent trop sec ;
— de la vitesse de l’air insufflé et de la direction des filets d’air ;
— de l’ionisation de l’air qui provoquait d’un frottement de l’air dans les gaines et peut donner l’impression de manquer d’air ;
— l’utilisation et la poussière, directement liées à la climatisation ;
— la vue : la vie dans des ouvrages souterrains supprime la plupart du temps toute possibilité de relaxation de l’œil grâce à une vue lointaine ;
— l’éclairage des locaux : il a été remarqué que l’absence d’ombres portées obtenue par une très bonne diffusion de la luminance fait disparaître les volumes et crée une gêne pour les personnes vivant dans cette ambiance ;
— enfin, le bruit : il a été constaté qu’une personne soumise à un bruit gênant a d’autant plus une sensation de malaise auditif que son champ de vision est borné. La possibilité d’expansion en regardant par exemple une fenêtre joue un rôle important.

3.1.1.2—Aspects psychologiques des conditions de vie en sous-sol
A la différence des facteurs physiques, les aspects psychologiques concernent davantage les usagers des transports que le personnel travaillant dans les ouvrages souterrains. Ils sont aussi importants que les facteurs physiologiques car, si les facteurs physiques conditionnent le confort des individus, les facteurs psychologiques conditionnent l’attitude du travail et de la vie en sous-sol. Les problèmes psychologiques particuliers concernant les usagers des transports en souterrain résultent essentiellement :
— de la désorientation spatiale pouvant engendrer une certaine anxieté ;
— de la crainte de ne pouvoir sortir en cas de sinistre ; le fait d’être en sous-sol développe chez les individus un sentiment de vulnérabilité plus grand ;
— de la notion de zone dite de protection (facteur "bulle", espace autour de soi dont chacun a besoin) ; il a été constaté que les individus supportent moins bien le coûteillement avec d’autres personnes en souterrain. Or, il est bien connu que la plupart des réseaux de transports souterrains connaissent des fortes affluences aux heures de pointe. Il apparaît alors des réactions de fuite et d’agressivité plus prononcées qu’à l’ordinaire ;
— de la peur que peut créer chez certaines personnes le sentiment de solitude ressenti aux heures creuses dans certains ouvrages propres aux agressions.
Pour le personnel travaillant en souterrain s’ajoutent certains problèmes psychologiques liés :
— au fait que le sous-sol évoque le funéraire : dans notre civilisation, le paradis n’est pas sous terre ;
— au changement (modification des habitudes en venant vivre dans de nouveaux locaux) ;
— à l’absence de référence avec le milieu extérieur (conditions atmosphériques particulièrement nettes dans les locaux en sous-sol) ;
— au sentiment de frustration né de la différence de niveaux pour ceux qui travaillent dans les étages inférieurs en sous-sol.
En conclusion de cette analyse, il semble néanmoins que les inconvénients signalés en ce qui concerne la vie en sous-sol ne doivent pas constituer un obstacle à l’implantation des transports en souterrain, du moins vis-à-vis des usagers dont le temps de séjour est généralement court. Par contre, les problèmes sont plus délicats pour le personnel travaillant en souterrain et il conviendra d’examiner les solutions qui peuvent être apportées à l’amélioration des conditions de vie en sous-sol.

3.1.2—Aspects socio-économiques de l’implantation des transports en souterrain
L’implantation de transports en souterrain présente au plan technico-économique un certain nombre d’inconvénients et se heurte à des difficultés qui sont en fin de compte très souvent des obstacles à la décision de recourir à une telle implantation.

3.1.2.1—Cas des villes anciennes
Dans le cas des villes anciennes, ces inconvénients et difficultés concernent les principaux points suivants :
— le coût de l’infrastructure : le coût d’un site propre souterrain est beaucoup plus élevé que celui des sites propres "au sol" ou même sur "viaduc" ; notons que le coût est encore augmenté par le fait que l’implantation en souterrain nécessite la création d’ouvrages particuliers pour la ventilation, la climatisation et, dans certains cas, pour lutter contre l’effet de piston engendré par la circulation des trains.
3-2—Pour quelles raisons, dans la pratique, ne pouvons-nous éviter les transports en souterrain?

Les problèmes de transports urbains concernent toutes les villes et principalement les grandes agglomérations et les villes moyennes. Ils résultent de la croissance accélérée de la demande de transport et de la longueur des déplacements liés à un certain type d’urbanisation et d’extension des villes.

Il convient à cet effet de distinguer les trois catégories suivantes de villes:

—d’une part, les villes disposant déjà d’un réseau de transport en souterrain qui doivent, la plupart du temps, non seulement procéder à l’extension de ce réseau, accroître sa capacité de transport, le moderniser et améliorer le confort des voyageurs, mais aussi rentabiliser leurs transports de surface (autobus). Ces villes sont bien sûr les grandes métropoles dont la population s’élève à plusieurs millions d’habitants. Pour ces villes, il peut être intéressant de rechercher, en étudiant l’histoire de la naissance de leurs réseaux de transports souterrains, les raisons qui ont conduit à une telle implantation. On constate alors que, dans la plupart des cas, il s’est écoulé une période importante entre le moment où a été émise l’idée de créer un transport souterrain et l’année qui a vu prendre la décision de le réaliser, ce qui prouve que le choix de l’implantation souterraine a rarement été spontané mais s’est finalement imposé dans la plupart des grandes villes comme étant la meilleure solution pour des raisons comparables à celles qui, de nos jours, conduisent à un tel choix et qui seront analysées plus loin;
—d’autre part, les villes ne disposant actuellement que d’un réseau de surface du type autobus, trolleybus ou tramways, mais qui s’avère insuffisant. Ces villes sont, soit de grandes métropoles, notamment dans les pays en voie de développement, soit des villes moyennes dont la population est de l’ordre d’un million d’habitants. C’est pour ces villes que se posent, à l’heure actuelle, les problèmes de transport les plus délicats;
—enfin, les villes nouvelles pour lesquelles se posent à la fois des problèmes de transports intérieurs et des problèmes de liaison avec la grande métropole dont elles sont généralement voisines.

La recherche des solutions aux problèmes de transport ne se présente pas dans les mêmes conditions pour ces trois catégories de villes:

—sur le plan du choix du système de transport, les villes non dotées d’un réseau peuvent étendre leur choix à un éventail plus grand de systèmes de transports (tramways, systèmes nouveaux, périmètre, métro);
—pour l’implantation d’un système de transport, une étude doit toujours être commencée par la détermination de la demande et des flux de déplacements à satisfaire, d’où la capacité du système de transport à retenir. Jusqu’à un certain niveau de trafic, l’on peut situer de 10 000-15 000 voyageurs par heure et par section de circulation, un système de transport établi au niveau du sol, en site banalisé ou partiellement en site propre, est généralement satisfaisant. Mais dès que la capacité de transport dépasse ce seuil, il est nécessaire dans la plupart des cas que le système de transport soit établi en site propre dit “intégral” et c’est alors que se pose le problème du choix de l’implantation de ce site propre: au sol, en viaduc ou en souterrain.

Dans un certain nombre de cas, lorsque les villes comportent un réseau viario bien rectiligne et des artères de grande largeur (cas des villes nouvelles et de certaines villes reconstruites après la guerre), il est possible d’implanter le site propre au niveau du sol ou en viaduc avec quelques dénivellations locales pour éviter les conflits de circulations. Il est vrai que se posent alors les problèmes de la protection des sites et de l’environnement et surtout ce l’un des nuisances qui, à eux seuls, peuvent parfois conduire au choix de l’implantation en souterrain.

Mais, dans la plupart des cas, il est impossible, à moins de recourir à de très importantes expropriations, de réserver une emprise pour le site propre, compte tenu de la largeur des rues et de leur tracé, les difficultés étant encore accrus au droit des stations en raison des surligneurs à prévoir. C’est alors qu’il est indispensable d’implanter le système de transport en souterrain, cette implantation pouvant être par ailleurs rendue nécessaire en raison d’une topographie défavorable comportant des déclivités incompatibles avec les performances du système de transport.

3-3—Dispositions à prendre pour réduire les inconvénients de l’implantation de transports en souterrain et avantages d’une telle implantation

Ces actions concernent:
—d’une part, l’amélioration des conditions de vie en souterrain, tant pour les usagers des transports que pour le personnel travaillant en sous-sol;
—d’autre part, les mesures d’organisation permettant de réduire l’importance des
3.3.1-1 Amélioration des conditions de vie en souterrain

Vis-à-vis des usagers des transports souterrains, et dans le cadre d'une politique de promotion des transports, de nombreuses enquêtes et études ont été entreprises et des actions sont maintenant menées dans tous les grands réseaux urbains pour rendre plus agréable le séjour, même de courte durée, dans les ouvrages souterrains.

C'est ainsi que les accès, à partir de la surface, au sous-sol ne doivent pas avoir un aspect de "descente aux enfers", mais être organisés pour poursuivre un cheminement naturel s'inscrivant dans le cadre de l'urbanisation locale: passage souterrain pour piétons, parking, prolongement d'une galerie marchande ou d'un ensemble commercial, en adoptant les dispositions architecturales qui s'imposent pour ménager la transition: éclairage naturel, puits de lumière, halls fleuris et décorés, dégagements avec large vue sur les installations fonctionnelles.

La vue est un sens privilégié chez l'être humain. Les efforts à faire pour faciliter le séjour en sous-sol doivent porter sur des aménagements visuels (forme, couleurs, rapport et échelle entre les volumes, etc.).

Il faut éviter les couloirs rectilignes trop longs et s'attacher à rendre les cheminements confortables par une mécanisation des dénivelées et aîses grâce à une signalétique très étudiée, tout étant mis en œuvre pour aider les voyageurs à se repérer le mieux possible et à satisfaire son sens de l'orientation. Il sera intéressant de rappeler la surface par des éléments de décoration appropriés par leur style ou leur dessin, indiquer les dessertes de références ou d'édifices bien connus dans la cité, multiplier l'affichage de plans de zones bien renseignés sur tous les moyens d'échanges et de communication offerts aux usagers.

Enfin il n'est pas exclu d'humaniser davantage la vie dans les volumes souterrains par des campagnes d'animation portant sur des expositions ou des manifestations culturelles. C'est ainsi qu'à Paris un certain nombre d'initiatives ont été entreprises et en particulier une récente expérience dénommée "métro méloïde", consistant à autoriser de petites formations musicales à se produire à certains points importants du réseau, a permis de voir d'importants rassemblements d'auditeurs visiblement intéressés et détendus dans des ouvrages où il est généralement très fréquent de rencontrer des usagers préoccupés et toujours affairés se hâtant soit vers la sortie comme pour échapper au monde souterrain du métro, soit vers un train qu'ils craignent toujours de manquer.

Vis-à-vis du personnel travaillant dans les ouvrages souterrains, les actions tendant à l'amélioration des conditions de vie en souterrain sont de même nature que celles qu'il convient de mener, de façon générale, pour la vie en sous-sol ou dans des locaux confinés et aveugles établis en élévation. Ces actions concernent:

- la climatisation: il est possible, pour répondre à l'inconfort de l'humidité évoqué précédemment, de faire varier la température au cours de la journée, tout en veillant à une humidification suffisante et en étudiant tout particulière-ment la direction des files d'air;
- l'éclairage: il faut chercher à ouvrir des perspectives dans les divers locaux, éventuellement introduire de la couleur dans les lampes émises en en différencier l'éclairage en fonction des postes de travail;
- la disposition des locaux et décorations intérieures: un soin particulier doit être donné aux locaux confinés et aveugles. Le luxe est à éviter pour rester en rapport avec la vie des personnes qui y séjournent. D'apres certaines constata- tions, la décoration des plafonds et des sols serait plus importante que celle des murs. Il convient également de se prévenir des locaux des couloirs par des cloisons vives, plutôt que par des cloisons pleines.

Dans la façon générale, en souterrain tout doit être concilié de manière plus soignée, tout doit être de meilleure qualité qu'en élévation, tout y étant plus génant car aggravé par l'absence de vue lointaine, car il apparaît bien que dans la vie en milieu confiné la vue et toutes ses conséquences de mouvement, de relaxation sont essentielles.

En second lieu apparaît l'ouie l'isolément dû à l'atténuation des bruits pouvant avoir une action déprimante sur les personnes, un soin particulier doit être apporté à cette perception.

3.3.1-2 Mesures d'organisation permettant de réduire l'importance des problèmes technico-économiques liés à l'amélioration des transports en souterrain

Les principaux problèmes auxquels se heurte l'amélioration de transports en souterrain sont, en dehors des aspects humains qui viennent d'être évoqués, de nature technico-économiques et résultent essentiellement de la difficulté des travaux à réaliser — difficulté propre aux travaux souterrains en général, mais encore accrue du fait de leur exécution en site urbain — qui conduit à des investissements très importants. Si bien que, l'amélioration souterraine étant, comme nous allons le voir, la plus satisfaisante à bien des égards, la véritable promotion en faveur d'une telle implantation passerait nécessairement par les différentes actions ou politiques tendant à la réduction du coût des infrastructures souterraines. Ces actions comprennent en particulier:

- la planification de l'occupation du sous-sol et la détermination de volumes d'occupation conditionnelle accompagnée de la mise en oeuvre de mesures conservatoires "raisonnables";
- le phasage des réalisations dans le cadre d'un plan d'urbanisme et de transports cohérent et stable;
- la standardisation des types d'ouvrages souterrains;
- le progrès des différentes techniques relatives aux travaux souterrains.

3.3-2 Avantages de l'amélioration des transports en souterrain

L'amélioration des transports en souterrain présente des avantages incontestables par rapport aux solutions "site propre au sol" ou "en viaduc" en ce qui concerne les points suivants:

- les réservations d'espaces: il n'y a pratiquement pas d'emprises permanentes au sol, si ce n’est au droit des accès aux stations et des points d'échanges. Par contre, elles supposent l'occupation de volumes parfois importants dans le sol, tant dans le domaine public (voirie) que dans le domaine privé (expropriation de tréfonds);
- la continuité du site propre qui est évidemment assurée;
- l'effet de "coupure" qui n'existe pas dans ce cas, du moins au niveau du sol; par contre, l'établissement d'un transport souterrain peut créer un effet de coupure vis-à-vis des autres réseaux souterrains surtout si certaines précautions ne sont pas prises lors de son implantation;
- les contraintes de tracé: il n'y en a théoriquement aucune à partir d'une certaine profondeur, mais il faut dans tous les cas tenir compte du contexte géologique, des ouvrages existants, de l'implantation des stations, de leurs accès et des points d'échanges en essayant de réduire les démolitions dans ces secteurs;
- l'incidence de la topographie: le site propre souterrain y est moins sensible que les sites propres "au sol" ou "viaduc"; cependant, une topographie tourmentée peut conduire à un approfondissement important des ouvrages si les déclivités maximales admissibles par le système sont inférieures à la pente naturelle du terrain et compte tenu des paliers qu'il convient de créer au droit de chaque station; la solution souterraine permet par contre de franchir assez commodément les accidents topographiques localisés;
- la protection des sites et de l'environnement: les seuls problèmes concernent la phase des travaux, pourtant, dans certains cas, il peut être nécessaire de recourir à des protections permanentes "vis-à-vis" d'ouvrages existants;
- les nuisances: le site propre souterrain constitue évidemment la solution la plus satisfaisante puisque ses seuls problèmes sont ceux relatifs aux vibrations et aux bruits engendrés par la circulation des trains. Des recherches constantes sont d'ailleurs menées sur le mode de constitution de la voie. Les faibles écarts constatés dans les ouvrages souterrains permettent d'y installer avec moins de risques de longs rails soudés, ce qui...
contribue très largement à la réduction des bruits de roulement et à un meilleur confort pour les voyageurs;
—le matériel roulant est moins exposé dans un site propre souterrain ce qui augmente sa durée de vie et supprime la nécessité de chaffage;
—les échanges avec les autres moyens de transports et les liaisons diverses.
Les avantages de l'utilisation du sous-sol urbain au plan de l'organisation des points d'échanges reposent essentiellement sur la possibilité "d'étagement" des différentes fonctions ou circulations, ce qui permet de réaliser:
des ouvrages sur des emprises au sol réduites;
des liaisons concentrées et courtes;
—des liaisons verticales facilement mecanisables.
Par ailleurs, la nature des ouvrages de correspondance permet dans un grand nombre de cas de les spécialiser en fonction des divers flux de circulation, ce qui contribue à améliorer les débits et réduit donc les temps de correspondance.
Enfin, des solutions intéressantes de réalisation de points d'échanges peuvent être mises en oeuvre dans le cadre d'opérations de rénovation de certains secteurs urbains, grâce à des aménagements parfois très importants regroupant différentes fonctions dans des ouvrages communs.

4-CONCLUSION
En conclusion à cet exposé, qui ne prétend bien sûr pas avoir épuisé un thème de réflexion aussi vaste, la réponse à la question posée: "devrions-nous éviter les transports en souterrain" semble pouvoir être formulée schématiquement de la façon suivante:
Dans le cas où les dispositions locales le permettent et moyennant l'ajonction de protections contre les nuisances, il est bien évident qu'une implantation des transports en souterrain ne s'impose pas tant pour des raisons humaines que pour des raisons techniques et économiques—les ouvrages souterrains peuvent être moins bien acceptés et leur coût de réalisation est toujours élevé.
Mais il est inévitable d'avoir recours à une telle implantation dans un certain nombre de cas, et en particulier dans les grandes agglomérations, pour lesquels les expériences concordent universellement.
Les problèmes humains liés à l'implantation de transports en souterrain ne semblent pas devoir constituer un obstacle déterminant su choix d'une telle solution. Ils sont en tout cas de même nature que ceux généralement rencontrés pour les autres activités établies en sous-sol, souvent d'ailleurs pour des raisons moins valables que celles qui conduisent à mettre les transports en souterrain.
Et il existe des solutions pour améliorer les conditions de vie en souterrain.
Quant aux problèmes techniques et économiques, certaines mesures d'organisation permettent de les réduire et les progrès constants enregistrés dans les travaux en souterrain contribuent à réduire sans cesse l'écart entre les infrastructures souterraines et celles établies l'air libre, d'autant que ces dernières sont de plus en plus pénalisées par les mesures à prendre pour la protection de l'environnement.
En tout état de cause, l'implantation souterraine constitue dans bien des cas la meilleure solution pour les transports urbains. Elle est pratiquement la seule à pouvoir garantir un niveau de trafic à la mesure des besoins des grandes villes et les conditions de transport (confort, vitesse, régularité) de plus en plus exigées par les citadins. Son impact sur l'environnement est faible et les nuisances engendrées pratiquement nulles. Enfin, grâce aux solutions intéressantes qu'elle permet dans l'organisation des points d'échanges, elle contribue à ce titre à la réduction des temps de transports, important facteur de la qualité de la vie en site urbain.